Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ohnaka, Mitiyasu
Автор Yamashita, Teruo
Дата выпуска 1989
dc.description To understand constitutive behavior near the rupture front during an earthquake source shear failure along a preexisting fault in terms of physics, local breakdown processes near the propagating tip of the slipping zone under mode II crack growth condition have been investigated experimentally and theoretically. A physically reasonable constitutive relation between cohesive stress τ and slip displacement D, τ = (τ<sub>i</sub> − τ<sub>d</sub>)[1 + α log (1 + βD)] exp (−<sub>η</sub>D) + τ<sub>d</sub>, is put forward to describe dynamic breakdown processes during earthquake source failure in quantitative terms. In the above equation, τ<sub>i</sub> is the initial shear stress on the verge of slip, τ<sub>d</sub> is the dynamic friction stress, and α, β, and η are constants. This relation is based on the constitutive features during slip failure instabilities revealed in the careful laboratory experiments. These experiments show that the shear stress first increases with ongoing slip during the dynamic breakdown process, the peak stress is attained at a very (usually negligibly) small but nonzero value of the slip displacement, and then the slip‐weakening instability proceeds. The model leads to bounded slip acceleration and stresses at and near the dynamically propagating tip of the slipping zone along the fault in an elastic continuum. The dynamic behavior near the propagating tip of the slipping zone calculated from the theoretical model agrees with those observed during slip failure along the preexisting fault much larger than the cohesive zone. The model predicts that the maximum slip acceleration be related to the maximum slip velocity and the critical displacement D<sub>c</sub> by , where k is a numerical parameter, taking a value ranging from 4.9 to 7.2 according to a value of τ<sub>i</sub>/τ<sub>p</sub> (τ<sub>p</sub> being the peak shear stress) in the present model. The model further predicts that be expressed in terms of and the cut off frequency f<sub>max</sub><sup>s</sup> of the power spectral density of the slip acceleration on the fault plane as and that in terms of D<sub>c</sub> and f<sub>max</sub><sup>s</sup> as . These theoretical relations agree well with the experimental observations and can explain interrelations between strong motion source parameters for earthquakes. The pulse width of slip acceleration on the fault plane is directly proportional to the time T<sub>c</sub> required for the crack tip to break down, and f<sub>max</sub><sup>s</sup> is inversely proportional to T<sub>c</sub>.
Формат application.pdf
Копирайт Copyright 1989 by the American Geophysical Union.
Тема GEODESY AND GRAVITY
Тема Seismic cycle related deformations
Тема SEISMOLOGY
Тема Earthquake dynamics
Название A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters
Тип article
DOI 10.1029/JB094iB04p04089
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 94
Первая страница 4089
Последняя страница 4104
Выпуск B4
Библиографическая ссылка Aki, K., Origin of ƒ<sub>max</sub>5th Maurice Ewing Symposium on Earthquake Source MechanicsAGUHarriman, N.Y.May 20–23, 1985.
Библиографическая ссылка Aki, K., P. G.Richards, Quantitative Seismology: Theory and Methods, 1–577, W. H. Freeman, San Francisco, Calif., 1980.
Библиографическая ссылка Andrews, D. J., Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, 5679–5687, 1976.
Библиографическая ссылка Barenblatt, G. I., The formation of equilibrium cracks during brittle fracture, General ideas and hypotheses, Axially‐symmetric cracks, Prikl. Mat. Mek. J. Appl. Math. Mech., 23, 622–636, 1959.
Библиографическая ссылка Bowden, F. B., D.Tabor, The Friction and Lubrication of Solids, Clarendon Press, Oxford, 1954.
Библиографическая ссылка Brune, J. N., Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997–5009, 1970.
Библиографическая ссылка Burridge, R., G.Conn, L. B.Freund, The stability of a rapid mode II shear crack with finite cohesive traction, J. Geophys. Res., 85, 2210–2222, 1979.
Библиографическая ссылка Das, S., K.Aki, A numerical study of two‐dimensional spontaneous rupture propagation, Geophys. J. R. Astron. Soc., 50, 643–668, 1977.
Библиографическая ссылка Day, S. M., Three‐dimensional simulation of spontaneous rupture: The effect of nonuniform prestress, Bull. Seismol. Soc. Am., 72, 1881–1902, 1982.
Библиографическая ссылка Dieterich, J. H., Time‐dependent friction in rocks, J. Geophys. Res., 77, 3690–3697, 1972.
Библиографическая ссылка Dieterich, J. H., Time‐dependent friction and the mechanics of stick‐slip, Pure Appl. Geophys., 116, 790–806, 1978.
Библиографическая ссылка Dieterich, J. H., Modeling of rock friction, 1, Experimental results and constitutive equations, J. Geophys. Res., 84, 2161–2168, 1979.
Библиографическая ссылка Dieterich, J. H., Constitutive properties of faults with simulated gouge, Mechanical Behavior of Crustal Rocks, Geophys. Monogr. Ser., 24N. L.Carter, et al., 102–120, AGU, Washington, D.C., 1981.
Библиографическая ссылка Dieterich, J. H., A model for the nucleation of earthquake slip, Earthquake Source Mechanics, Geophys. Monogr. Ser., 37S.Das, J.Boatwright, C. H.Scholz, 37–47, AGU, Washington, D.C., 1986.
Библиографическая ссылка Gu, J. C., Frictional resistance to accelerating slip, Pure Appl. Geophys., 122, 662–679, 1985.
Библиографическая ссылка Hanks, T. C., ƒ<sub>max</sub>, Bull. Seismol. Soc. Am., 72, 1867–1879, 1982.
Библиографическая ссылка Ida, Y., Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy, J. Geophys. Res., 77, 3796–3805, 1972.
Библиографическая ссылка Ida, Y., The maximum acceleration of seismic ground motion, Bull. Seismol. Soc. Am., 63, 959–968, 1973.
Библиографическая ссылка Ohnaka, M., Y.Kuwahara, Characteristic features of local breakdown near a crack‐tip in the transition zone from nucleation to unstable rupture during stick‐slip shear failure, Tectonophysics, 1989.
Библиографическая ссылка Ohnaka, M., K.Yamamoto, Experimental studies of failure nucleation and propagation along simulated faults in rock, Study on Short‐Period Behavior in Fault Motion and Estimation of Input Seismic Motion, Final Tech. RepR.Sato, A‐59‐3, 11–46Earthquake Res. Inst., Tokyo, 1984.
Библиографическая ссылка Ohnaka, M., Y.Kuwahara, K.Yamamoto, T.Hirasawa, Dynamic breakdown processes and the generating mechanism for high‐frequency elastic radiation during stick‐slip instabilities, Earthquake Source Mechanics, Geophys. Monogr. Ser., 37S.Das, J.Boatwright, C. H.Scholz, 13–24, AGU, Washington, D.C., 1986.
Библиографическая ссылка Ohnaka, M., Y.Kuwahara, K.Yamamoto, Constitutive relations between dynamic physical parameters near a tip of the propagating slip zone during stick‐slip shear failure, Tectonophysics, 144, 109–125, 1987a.
Библиографическая ссылка Ohnaka, M., Y.Kuwahara, K.Yamamoto, Nucleation and propagation processes of stick‐slip failure and normal stress dependence of the physical parameters of dynamic slip failure, J. Nat. Disaster Sci., 9, 1–21, 1987b.
Библиографическая ссылка Okubo, P. G., Experimental and numerical model studies of frictional instability seismic sources, Ph.D. thesis, 162 pp.,Mass. Inst. of Technol.,Cambridge,1986.
Библиографическая ссылка Okubo, P. G., J. H.Dieterich, Fracture energy of stick‐slip events in a large scale biaxial experiment, Geophys. Res. Lett., 8, 887–890, 1981.
Библиографическая ссылка Okubo, P. G., J. H.Dieterich, Effects of physical fault properties on frictional instabilities produced on simulated faults, J. Geophys. Res., 89, 5817–5827, 1984.
Библиографическая ссылка Okubo, P. G., J. H.Dieterich, State variable fault constitutive relations for dynamic slip, Earthquake Source Mechanics, Geophys. Monogr. Ser., 37S.Das, J.Boatwright, C. H.Scholz, 25–35, AGU, Washington, D.C., 1986.
Библиографическая ссылка Palmer, A. C., J. R.Rice, The growth of slip surfaces in the progressive failure of over‐consolidated clay, Proc. R. Soc. London, Ser. A, 332, 527–548, 1973.
Библиографическая ссылка Papageorgiou, A. S., K.Aki, A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion, I, Description of the model, Bull. Seismol. Soc. Am., 73, 693–722, 1983a.
Библиографическая ссылка Papageorgiou, A. S., K.Aki, A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion, II, Applications of the model, Bull. Seismol. Soc. Am., 73, 953–978, 1983b.
Библиографическая ссылка Rice, J. R., The mechanics of earthquake rupture, Physics of the Earth's Interior, 555–649, North‐Holland, Amsterdam, 1980.
Библиографическая ссылка Rice, J. R., Constitutive relations for fault slip and earthquake instabilities, Pure Appl. Geophys., 121, 443–475, 1983.
Библиографическая ссылка Rice, J. R., S. T.Tse, Dynamic motion of a single degree of freedom system following a rate and state dependent friction law, J. Geophys. Res., 91, 521–530, 1986.
Библиографическая ссылка Rudnicki, J. W., Fracture mechanics applied to the Earth's crust, Annu. Rev. Earth Planet. Sci., 8, 489–525, 1980.
Библиографическая ссылка Ruina, A., Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359–10370, 1983.
Библиографическая ссылка Scholz, C. H., J. T.Engelder, The role of asperity indentation and ploughing in rock friction, I, Asperity creep and stick‐slip, Int. J. Rock Mech. Min. Sci., 13, 149–154, 1976.
Библиографическая ссылка Stuart, W. D., Strain softening prior to two‐dimensional strike slip earthquakes, J. Geophys. Res., 84, 1063–1070, 1979a.
Библиографическая ссылка Stuart, W. D., Strain‐softening instability model for the San Fernando earthquake, Science, 203, 907–910, 1979b.
Библиографическая ссылка Stuart, W. D., G. M.Mavko, Earthquake instability on a strike‐slip fault, J. Geophys. Res., 84, 2153–2160, 1979.
Библиографическая ссылка Tse, S. T., J. R.Rice, Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452–9472, 1986.
Библиографическая ссылка Wong, T.‐F., Shear fracture energy of Westerly granite from postfailure behavior, J. Geophys. Res., 87, 990–1000, 1982.
Библиографическая ссылка Wong, T.‐F., On the normal stress dependence of the shear fracture energy, Earthquake Source Mechanics, Geophys. Monogr. Ser., 37S.Das, J.Boatwright, C. H.Scholz, 1–11, AGU, Washington, D.C., 1986.

Скрыть метаданые