Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Mackwell, Stephen J.
Автор Kohlstedt, David L.
Дата выпуска 1990
dc.description To investigate the kinetics of diffusion of hydrogen in olivine, single crystals from San Carlos in Arizona have been annealed at temperatures between 800° and 1000°C under hydrothermal conditions at a confining pressure of 300 MPa. The hydrogen diffusivities were determined for the [100], [010], and [001] directions from concentration profiles for hydroxyl in the samples. These profiles were obtained from infrared spectra taken at 100‐μm intervals across a thin slice which was cut from the central portion of each annealed crystal. The rate of diffusion is anisotropic, with fastest transport along the [100] axis and slowest along the [010] axis. The fit of the data to an Arrhenius law for diffusion parallel to [100] yields an activation enthalpy of 130±30 kJ/mol with a preexponential term of (6±3)×10<sup>−5</sup> m<sup>2</sup> s<sup>−1</sup>. For diffusion parallel to [001], as there are insufficient data to calculate the activation enthalpy for diffusion, we used the same value as that for diffusion parallel to [100] and determined a preexponential term of (5±4)×10<sup>−6</sup> m<sup>2</sup> s<sup>−1</sup>. The diffusion rate parallel to [010] is about 1 order of magnitude slower than along [001]. The measured diffusivities are large enough that the hydrogen content of olivine grains which are millimeters in diameter will adjust to changing environmental conditions in time scales of hours at temperatures as low as 800°C. As xenoliths ascending from the mantle remain at high temperatures (i.e., >1000°C) but experience a rapid decrease in pressure, and hence hydrogen fugacity, olivine grains may dehydrate during ascent. By comparison, slow rates of carbon diffusion (Tingle et al., 1988) suggest that carbon will not be lost from olivine during ascent. Thus, low hydrogen contents within olivine and within fluid inclusions in olivine cannot be taken as support for low water contents in the mantle.
Формат application.pdf
Копирайт Copyright 1990 by the American Geophysical Union.
Тема GEODESY AND GRAVITY
Тема Rheology of the lithosphere and mantle
Тема MINERALOGY AND PETROLOGY
Тема Mineralogy, Petrology, and Rock Chemistry: Crystal chemistry
Тема Mineralogy, Petrology, and Rock Chemistry: Composition of the mantle and core
Тема MINERAL PHYSICS
Тема Defects
Тема Optical, infrared, and Raman spectroscopy
Тема PHYSICAL PROPERTIES OF ROCKS
Тема Fracture and flow
Тема STRUCTURAL GEOLOGY
Тема Rheology: crust and lithosphere
Тема Rheology: general
Тема Rheology: mantle
Тема TECTONOPHYSICS
Тема Rheology: crust and lithosphere
Тема Rheology: general
Тема Rheology: mantle
Название Diffusion of hydrogen in olivine: Implications for water in the mantle
Тип article
DOI 10.1029/JB095iB04p05079
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 95
Первая страница 5079
Последняя страница 5088
Выпуск B4
Библиографическая ссылка Beran, A., A.Putnis, A model of the OH positions in olivine, derived from infrared‐spectroscopic investigations, Phys. Chem. Miner., 9, 57–60, 1983.
Библиографическая ссылка Buening, D. K., P. R.Buseck, Fe‐Mg lattice diffusion in olivine, J. Geophys. Res., 78, 6852–6862, 1973.
Библиографическая ссылка Carslaw, H. S., J. C.Jaeger, Conduction of Heat in Solids, 510, Clarendon, Oxford, 1959.
Библиографическая ссылка Chopra, P. N., M. S.Paterson, The role of water in the deformation of dunite, J. Geophys. Res., 89, 7861–7876, 1984.
Библиографическая ссылка Clark, A. M., J. V. P.Long, Anisotropic diffusion of nickel in olivine, Thomas Graham Memorial Symposium on Diffusion Processes, 511–521Gordon and Breach, New York, 1971.
Библиографическая ссылка Freund, F., G.Oberheuser, Water dissolved in olivine: A single‐crystal study, J. Geophys. Res., 91, 745–761, 1986.
Библиографическая ссылка Gaite, J. M., S. S.Hafner, Environment of Fe<sup>3+</sup> at the M2 and Si sites of forsterite obtained from EPR, J. Chem. Phys., 80, 2747–2751, 1984.
Библиографическая ссылка Gerard, O., O.Jaoul, Oxygen diffusion in San Carlos olivine, J. Geophys. Res., 94, 4119–4128, 1989.
Библиографическая ссылка GreenII, H. W., Rheological implications of the dissolution of volatiles in mantle olivine, Phys. Earth Planet. Inter., 51, 123–124, 1988.
Библиографическая ссылка Hermeling, J., H.Schmalzried, Tracerdiffusion of the Fe‐cations in olivine (Fe<sub>x</sub>Mg<sub>1‐x</sub>)<sub>2</sub>SiO<sub>4</sub> (III), Phys. Chem. Miner., 11, 161–166, 1984.
Библиографическая ссылка Hobbs, B. E., Constraints on the mechanism of deformation of olivine imposed by defect chemistry, Tectonophysics, 92, 35–69, 1983.
Библиографическая ссылка Houlier, B., O.Jaoul, F.Abel, R. C.Liebermann, Oxygen and silicon self‐diffusion in natural olivine at T = 1300°C, Phys. Earth Planet. Inter., 50, 240–250, 1988.
Библиографическая ссылка Huebner, J. S., Buffering techniques for hydrostatic systems at elevated pressures, Research Techniques for High Pressure and High TemperatureG. C.Ulmer, 123–177, Springer‐Verlag, New York, 1971.
Библиографическая ссылка Jackson, M. J., H. N.Pollack, Mantle devolatilization and convection: Implications for the thermal history of the Earth, Geophys. Res. Let., 14, 737–740, 1987.
Библиографическая ссылка Johnson, O. W., J. W.DeFord, S.‐H.Paek, Concentration dependent diffusion of H<sup>+</sup> in TiO<sub>2</sub>: Analysis of electronic effects in ionic diffusion, Mater. Sci. Res., 9, 253–267, 1975.
Библиографическая ссылка Karato, S., M. S.Paterson, J. D.Fitz Gerald, Rheology of synthetic olivine aggregates: Influence of grain size and water, J. Geophys. Res., 91, 8151–8176, 1986.
Библиографическая ссылка Kats, A., Y.Haven, J. M.Stevels, Hydroxyl groups in alpha‐quartz, Phys. Chem. Glasses, 3, 69–75, 1962.
Библиографическая ссылка Kitamura, M., S.Kondoh, N.Morimoto, G. H.Miller, G. R.Rossman, A.Putnis, Planar OH‐bearing defects in mantle olivine, Nature, 328, 143–145, 1987.
Библиографическая ссылка Kohlstedt, D. L., S. J.Mackwell, Hydrolytic weakening of olivine, Eos Trans. AGU, 69, 477, 1988.
Библиографическая ссылка Kronenberg, A. K., S. H.Kirby, R. D.Aines, G. R.Rossman, Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening, J. Geophys. Res., 91, 12723–12744, 1986.
Библиографическая ссылка Mackwell, S. J., D. L.Kohlstedt, M. S.Paterson, The role of water in the deformation of olivine single crystals, J. Geophys. Res., 90, 11319–11333, 1985.
Библиографическая ссылка Mackwell, S. J., D.Dimos, D. L.Kohlstedt, Transient creep of olivine: Point defect relaxation times, Philos. Mag., 57, 779–789, 1988.
Библиографическая ссылка Miller, G. H., G. R.Rossman, G. E.Harlow, The natural occurrence of hydroxide in olivine, Phys. Chem. Miner., 14, 461–472, 1987.
Библиографическая ссылка Misener, D. J., Cationic diffusion in olivine to 1400°C and 35 kbar, Geochemical Transport and KineticsA. W.Hoffman, B. J.Giletti, H. S.Yoder, R. A.Yund, 117–129, Carnegie Institution, Washington, D.C., 1974.
Библиографическая ссылка Morioka, M., Cation diffusion in olivine, I, Cobalt and magnesium, Geochim. Cosmochim. Acta, 44, 759–762, 1980.
Библиографическая ссылка Myers, J., H. P.Eugster, The system Fe‐Si‐O: Oxygen buffer calibrations to 1500K, Contrib. Mineral. Petrol., 82, 75–90, 1983.
Библиографическая ссылка Nakamura, A., H.Schmalzried, On the nonstoichiometry and point defects of olivine, Phys. Chem. Miner., 10, 27–37, 1983.
Библиографическая ссылка Nakamura, A., H.Schmalzried, On the Fe<sup>2+</sup> — Mg<sup>2+</sup> interdiffusion in olivine (II), Ber. Bunsenges. Phys. Chem., 88, 140–145, 1984.
Библиографическая ссылка Pasteris, J. D., Secondary graphitization in mantle‐derived rocks, Geology, 16, 804–807, 1988.
Библиографическая ссылка Pasteris, J. D., B. J.Wanamaker, Laser Raman microprobe analysis of experimentally re‐equilibrated fluid inclusions in olivine: Some implications for mantle fluids, Am. Mineral., 73, 1074–1088, 1988.
Библиографическая ссылка Paterson, M. S., The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials, Bull. Mineral., 105, 20–29, 1982.
Библиографическая ссылка Reddy, K. P. R., S. M.Oh, L. D.Major, A. R.Cooper, Oxygen diffusion in forsterire, J. Geophys. Res., 85, 322–326, 1980.
Библиографическая ссылка Robie, R. A., B. S.Hemingway, J. R.Fisher, Thermodynamic properties of minerals and related substances at 298.15K and 1 bar (10<sup>5</sup> pascals) pressure and at higher temperatures, U.S. Geol. Surv. Bull., 1452, 1978.
Библиографическая ссылка Roedder, E., Fluid inclusions, Rev. Mineral., 12, 644, 1984.
Библиографическая ссылка Rossman, G. R., Optical spectroscopy, Rev. Mineral., 18, 207–254, 1988.
Библиографическая ссылка Ryerson, F. J., W. B.Durham, D. J.Cherniak, W. A.Lanford, Oxygen diffusion in olivine: The effect of oxygen fugacity and implications for creep, J. Geophys. Res., 94, 4105–4118, 1989.
Библиографическая ссылка Sato, H., High temperature a.c. electrical properties of olivine single crystal with varying oxygen partial pressure: Implications for the point defect chemistry, Phys. Earth Planet. Inter., 41, 269–282, 1986.
Библиографическая ссылка Schock, R. N., A. G.Duba, T. J.Shankland, Electrical conductivity in olivine, J. Geophys. Res., 94, 5829–5839, 1989.
Библиографическая ссылка Shaw, H. R., D. R.Wones, Fugacity coefficients for hydrogen gas between 0° and 1000°C, for pressures to 3000 atm., Am. J. Sci., 262, 918–929, 1964.
Библиографическая ссылка Shewmon, P. G., Diffusion in Solids, McGraw‐Hill, New York, 1963.
Библиографическая ссылка Tingle, T. N., H. W.GreenII, A. A.Finnerty, Experiments and observations bearing on the solubility and diffusivity of carbon in olivine, J. Geophys. Res., 93, 15289–15304, 1988.
Библиографическая ссылка Todheide, K., Water at high temperatures and pressuresin Water: A Comprehensive Treatise., 1, The Physics and Physical Chemistry of WaterF.Franks, 463–514, Plenum, New York, 1972.

Скрыть метаданые