Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Webb, Sharon L.
Автор Dingwell, Donald B.
Дата выпуска 1990
dc.description The stress‐strain rate relationships of four silicate melt compositions (high‐silica rhyolite, andesite, tholeiitic basalt, and nephelinite) have been studied using the fiber elongation method. Measurements were conducted in a stress range of 10–400 MPa and a strain rate range of 10<sup>−6</sup> to 10<sup>−3</sup> s<sup>−1</sup>. The stress‐strain rate relationships for all the melts exhibit Newtonian behavior at low strain rates, but non‐Newtonian (nonlinear stress‐strain rate) behavior at higher strain rates, with strain rate increasing faster than the applied stress. The decrease in calculated shear viscosity with increasing strain rate precedes brittle failure of the fiber as the applied stress approaches the tensile strength of the melt. The decrease in viscosity observed at the high strain rates of the present study ranges from 0.25 to 2.54 log<sub>10</sub> Pa s. The shear relaxation times τ of these melts have been estimated from the low strain rate, Newtonian, shear viscosity, using the Maxwell relationship τ = η<sub>s</sub>/G<sub>∞</sub>. Non‐Newtonian shear viscosity is observed at strain rates ( ε˙=time−1) equivalent to time scales that lie 3 log<sub>10</sub> units of time above the calculated relaxation time. Brittle failure of the fibers occurs 2 log<sub>10</sub> units of time above the relaxation time. This study illustrates that the occurrence of non‐Newtonian viscous flow in geological melts can be predicted to within a log<sub>10</sub> unit of strain rate. High‐silica rhyolite melts involved in ash flow eruptions are expected to undergo a non‐Newtonian phase of deformation immediately prior to brittle failure.
Формат application.pdf
Копирайт Copyright 1990 by the American Geophysical Union.
Тема Silicate Melts and Mantle Petrogenesis (in Memory of Christopher M. Scarfe)
Тема GEODESY AND GRAVITY
Тема Rheology of the lithosphere and mantle
Тема MINERALOGY AND PETROLOGY
Тема Mineralogy, Petrology, and Rock Chemistry: Igneous petrology
Тема PHYSICAL PROPERTIES OF ROCKS
Тема Fracture and flow
Тема STRUCTURAL GEOLOGY
Тема Rheology: crust and lithosphere
Тема Rheology: general
Тема Rheology: mantle
Тема TECTONOPHYSICS
Тема Rheology: crust and lithosphere
Тема Rheology: general
Тема Rheology: mantle
Тема Stresses: crust and lithosphere
Тема Stresses: deep‐seated
Тема Stresses: general
Тема VOLCANOLOGY
Тема Physics and chemistry of magma bodies
Название Non‐Newtonian rheology of igneous melts at high stresses and strain rates: Experimental results for rhyolite, andesite, basalt, and nephelinite
Тип article
DOI 10.1029/JB095iB10p15695
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 95
Первая страница 15695
Последняя страница 15701
Выпуск B10
Библиографическая ссылка Angell, C. A., L. M.Torrell, Short time structural relaxation processes in liquids: Comparison of experimental and computer simulation glass transition of picosecond timescales, J. Chem. Phys., 78, 937–945, 1983.
Библиографическая ссылка Bansal, N. P., R. H.Doremus, Handbook of Glass Properties, Academic, San Diego, Calif., 1986.
Библиографическая ссылка Bottinga, Y., D. F.Weill, The viscosity of magmatic silicate liquids: a model for calculation, Am. J. Sci., 272, 438–475, 1972.
Библиографическая ссылка Brückner, R., Structural aspects of highly deformed melts, J. Non Cryst. Solids, 95‐96, 961–968, 1987.
Библиографическая ссылка Chayes, F., A world data base for igneous petrology, Year Book Carnegie Inst. Washington, 74, 549–550, 1975.
Библиографическая ссылка Christensen, R. M., Theory of Viscoelasticity, 364, Academic, San Diego, Calif., 1982.
Библиографическая ссылка Dingwell, D. B., Effect of fluorine on the viscosity of diopside liquid, Am. Mineral., 74, 333–338, 1989.
Библиографическая ссылка Dingwell, D. B., S. L.Webb, Structural relaxation in silicate melts and non‐Newtonian melt rheology in geologic processes, Phys. Chem. Mineral., 16, 508–516, 1989.
Библиографическая ссылка Dingwell, D. B., C. M.Scarfe, D.Cronin, The effect of fluorine on viscosities in the system Na<sub>2</sub>O‐Al<sub>2</sub>O<sub>3</sub>—SiO<sub>2</sub>: Implications for phonolites, trachytes and rhyolites, Am. Mineral., 70, 80–87, 1985.
Библиографическая ссылка Ferry, J. D., Viscoelastic properties of Polymers, 641, John Wiley, New York, 1980.
Библиографическая ссылка Harris, P. G., W. Q.Kennedy, C. M.Scarfe, Volcanism versus plutonism: The effect of chemical composition, Geol. J. Spec. Issue, 2, 187–200, 1970.
Библиографическая ссылка Herzfeld, K. F., T. A.Litovitz, Absorption and Dispersion of Ultrasonic Waves, 535, Academic, San Diego, Calif., 1959.
Библиографическая ссылка Li, J. H., D. R.Uhlmann, The flow of glass at high stress levels, I, Non‐Newtonian behavior of homogeneous 0.08 Rb<sub>2</sub>O‐0.92 SiO<sub>2</sub> glasses, J. Non Cryst. Solids, 3, 127–147, 1970.
Библиографическая ссылка Liu, S.‐B., J. F.Stebbins, E.Schneider, A.Pines, Diffusive motion in alkali silicate melts: A NMR study at high temperature, Geochim. Cosmochim. Acta, 52, 527–538, 1988.
Библиографическая ссылка Mazurin, O. V., Glass relaxation, J. Non Cryst. Solids, 87, 392–407, 1986.
Библиографическая ссылка Mills, J. J., Low frequency storage and loss moduli of soda‐silica glasses in the transformation range, J. Non Cryst. Solids, 14, 255–268, 1974.
Библиографическая ссылка Mysen, B. O., Magmatic silicate melts: Relations between bulk composition, structure and properties, Magmatic Processes: Physicochemical PrinciplesB. O.Mysen, Spec. Publ. Geochem. Soc., 1, 375–399, 1987.
Библиографическая ссылка Nye, J. F., Physical Properties of Crystals, 322, Oxford University Press, New York, 1957.
Библиографическая ссылка Rigden, S. M., T. J.Ahrens, E. M.Stolper, Shock compression of molten silicate: Results for a model basaltic composition, J. Geophys. Res., 93, 367–382, 1988.
Библиографическая ссылка Rivers, M. L., I. S. E.Carmichael, Ultrasonic studies of silicate melts, J. Geophys. Res., 92, 9247–9270, 1987.
Библиографическая ссылка Ryan, M. P., J. Y. K.Blevins, The viscosity of synthetic and natural silicate melts and glasses at high temperatures and 1 bar (10<sup>5</sup> pascals) pressure and higher pressures, U.S. Geol. Surv. Bull., 1764, 563, 1987.
Библиографическая ссылка Sato, H., M. H.Manghnani, Ultrasonic Measurements of V<sub>p</sub> and Q<sub>p</sub>: Relaxation spectrum of complex modulus on basalt melts, Phys. Earth Planet. Inter., 41, 18–33, 1985.
Библиографическая ссылка Scarfe, C. M., D. J.Cronin, J. T.Wenzel, D. A.Kaufman, Viscosity‐temperature relationships at 1 atm in the system diopside‐anorthite, Am. Mineral., 68, 1083–1088, 1983.
Библиографическая ссылка Shaw, H. R., Comments on viscosity, crystal settling, and convection in granitic magmas, Am. J. Sci., 263, 120–152, 1965.
Библиографическая ссылка Shaw, H. R., Viscosities of magmatic silicate liquids: An empirical method of prediction, Am. J. Sci., 272, 870–893, 1972.
Библиографическая ссылка Shimizu, N., I.Kushiro, Diffusivity of oxygen in jadeite and diopside melts at high pressures, Geochim. Cosmochim. Acta, 48, 1295–1303, 1984.
Библиографическая ссылка Simmons, J. H., R. K.Mohr, C. J.Montrose, Non‐Newtonian viscous flow in glass, J. Appl. Phys., 53, 4075–4080, 1982.
Библиографическая ссылка Spera, F. J., D. A.Yuen, S. J.Kirschvink, Thermal boundary layer convection in silicic magma chambers: Effects of temperature‐dependent rheology and implications for thermogravitational chemical fractionation, J. Geophys. Res., 87, 8755–8767, 1982.
Библиографическая ссылка Spera, F. J., A.Borgia, J.Strimple, M.Feigenson, Rheology of melts and magmatic suspensions, 1, Design and calibration of concentric cylinder viscometer with application to rhyolitic magma, J. Geophys. Res., 93, 10273–10294, 1988.
Библиографическая ссылка Stebbins, J. F., Effects of temperature and composition on silicate glass structure and dynamics: <sup>29</sup>Si NMR results, J. Non Cryst. Solids, 106, 359–369, 1988.

Скрыть метаданые