Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Denny, Marvin D.
Автор Goodman, Dennis M.
Дата выпуска 1990
dc.description As part of a larger joint effort by the Defense Advanced Research Project Agency and the Department of Energy to study the seismic source problem, a comprehensive reevaluation of the 1964 Salmon and 1966 Sterling nuclear explosions in dome salt was carried out. The Sterling source function originally estimated by Springer et al. (1968) conveys the impression that the cavity was badly overdriven; on reexamination this does not appear to be the case. The work of Glenn et al. (1987) on the Sterling free‐field data is expanded upon, confirming that the cavity response was close to the theoretical expectation. Sterling's source function is estimated and is found to be comparable to Patterson's (1966) slightly weakened salt model. A source model for Salmon is derived from the Sterling source model and the five seismic stations that recorded both events. The new source model has a reduced displacement potential ψ<sub>∝</sub> of about half that previously estimated. A temporary nonlinear two‐wave system developed during the Salmon explosion as the compressional wave evolved from a shock wave; the separation of these two waves resulted in a high‐frequency roll‐off of the reduced velocity potential of ω<sup>−3</sup>. In addition, it is shown that the comer frequency is much higher and is created much closer to the cavity than the eigenfrequency. For both Salmon and Sterling the radial stresses are approximately a low‐passed damped sinusoid superimposed on a small step function. The decoupling value of 72 obtained by Springer et al. (1968) is confirmed. A revision of Patterson's (1966) partial decoupling curve shows that the value for full decoupling in a shot‐generated cavity would be only slightly higher. Contrary to previous studies, decoupling as a function of frequency for the surface waves is found to be the same as for the P waves. A new definition of decoupling appropriate to threshold test‐ban treaty monitoring is also proposed.
Формат application.pdf
Копирайт Copyright 1990 by the American Geophysical Union.
Тема GEODESY AND GRAVITY
Тема Seismic cycle related deformations
Тема Gravity anomalies and Earth structure
Тема SEISMOLOGY
Тема Earthquake dynamics
Тема Continental crust
Тема Seismic monitoring and test‐ban treaty verification
Тема General or miscellaneous
Тема GEOGRAPHIC LOCATION
Тема Information Related to Geographic Region: North America
Название A case study of the seismic source function: Salmon and sterling reevaluated
Тип article
DOI 10.1029/JB095iB12p19705
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 95
Первая страница 19705
Последняя страница 19723
Выпуск B12
Библиографическая ссылка Aki, K., M.Bouchon, P.Reasenberg, Seismic source function for an underground nuclear explosion, Bull. Seismol. Soc. Am., 64, 131–148, 1974.
Библиографическая ссылка BlakeJr., F. G., Spherical wave propagation in solid media, J. Acoust. Soc. Am., 24, 211–215, 1952.
Библиографическая ссылка Blandford, R. R., J. R.Woolson, Experimental spectral analysis of Salmon/Sterling decouplingRep. SDAC‐TR‐79‐3Seismic Data Anal. Center, Alexandria, Va., 1979.
Библиографическая ссылка Cheng, D. K., Analysis of Linear Systems, Addison‐Wesley, Reading, Mass., 1959.
Библиографическая ссылка Glenn, L. A., AFTON revisited: An improved algorithm for numerical solution of initial value problems in continuum mechanics, 1, The one‐dimensional equationsRep. UCRL‐52512Lawrence Livermore Natl. Lab., Livermore, Calif., 1978.
Библиографическая ссылка Glenn, L. A., M. D.Denny, J. H.Rial, Sterling revisited: The seismic source for a cavity‐decoupled explosion, Geophys. Res. Lett., 14, 1103–1106, 1987.
Библиографическая ссылка Goodman, D. M., NLS: A system identification package for transient signalsRep. UCID‐19767Lawrence Livermore Natl. Lab., Livermore, Calif., 1983.
Библиографическая ссылка Gupta, I. N., K. L.McLaughlin, R. A.Wagner, T. W.McElfresh, M. E.Marshall, R. S.Jih, Studies in decouplingRep. TGAL‐86‐08Teledyne Geotech Alexandria Lab., Alexandria, Va., 1986.
Библиографическая ссылка Haskell, N. A., Analytic approximation for the elastic radiation from a contained underground explosion, J. Geophys. Res., 72, 2583–2587, 1967.
Библиографическая ссылка Herbst, R. F., G. C.Werth, D. L.Springer, Use of large cavities to reduce seismic waves from underground explosions, J. Geophys. Res., 66, 959–978, 1961.
Библиографическая ссылка Langston, C. A., Kinematic analysis of strong motion P and SV waves from the Sterling event, J. Geophys. Res., 88, 3486–3497, 1983.
Библиографическая ссылка Latter, A., R. E.LeLevier, E. A.Martinelli, W. G.McMillan, A method of concealing underground nuclear explosions, J. Geophys. Res., 66, 943–946, 1961.
Библиографическая ссылка Mueller, R. A., J. R.Murphy, Seismic characteristics of' underground nuclear detonations, I, Seismic spectrum scaling, Bull. Seismol. Soc. Am., 61, 1675–1692, 1971.
Библиографическая ссылка O'Brien, P. N. S., Some experiments concerning the primary seismic pulse, Geophys. Prospect., 17, 511–547, 1969.
Библиографическая ссылка Patterson, D., The calculational sensitivity of a model describing the response of a nuclear formed cavity: The Sterling eventRep. UCID‐5125Lawrence Livermore Natl. Lab., Livermore, Calif., 1966a.
Библиографическая ссылка Patterson, D., Nuclear decoupling, full and partial, J. Geophys. Res., 71, 3427–3436, 1966b.
Библиографическая ссылка Perret, W. R., Shear waves from a nuclear explosion in a salt cavity, Bull. Seismol. Soc. Am., 58, 2043–2051, 1968.
Библиографическая ссылка Perret, W. R., R. C.Bass, Free‐field ground motion induced by underground explosions, Sandia Natl. Lab. Tech. Rep.SAND74‐0252, 1975.
Библиографическая ссылка Perret, W. R., R. L.Rutter, F. K.Millsap, A. D.Thornbrough, G. J.Hansen, Free‐field particle motion from a nuclear explosion in salt, I, Project Dribble, Salmon eventRep. VUF‐3012Sandia Natl. Lab., Albuquerque, N. M., 1967.
Библиографическая ссылка Rawson, D., P.Randolph, C.Boardman, V.Wheeler, Post‐explosion environment resulting from the Salmon event, J. Geophys. Res., 71, 3507–3521, 1966.
Библиографическая ссылка Rimer, N., J. T.Cherry, Ground motion predictions for the Grand Saline experimentRep. USC‐TR‐82‐25S‐Cubed Corp., La Jolla, Calif., 1982.
Библиографическая ссылка Robinson, E. A., Multichannel Time Series Analysis With Digital Computer Programs, Holden‐Day, San Francisco, Calif., 1967.
Библиографическая ссылка Rosengren, J. W., Seismic decoupling and nuclear monitoring at high frequenciesRep. RDA‐TR‐138513‐004R&D Assoc., Arlington, Va., 1987.
Библиографическая ссылка Sharpe, J. A., The production of elastic waves by explosion pressures, I, Theory and empirical field observations, Geophysics, 7, 144–154, 1942.
Библиографическая ссылка Sisemore, C. J., L. A.Rogers, W. R.Perret, Project Sterling: Subsurface phenomenology measurements near a decoupled nuclear event, J. Geophys. Res., 74, 6623–6637, 1969.
Библиографическая ссылка Springer, D., M.Denny, J.Healy, W.Mickey, The Sterling experiment: Decoupling of seismic waves by a shot‐generated cavity, J. Geophys. Res., 73, 5995–6011, 1968.
Библиографическая ссылка Von Seggern, D., R.Blandford, Source time functions and spectra for underground nuclear explosions, Geophys. J. R. Astron. Soc., 31, 83–97, 1972.
Библиографическая ссылка Werth, G. C., R. F.Herbst, Comparison of amplitudes of seismic waves from nuclear explosions in four mediums, J. Geophys. Res., 68, 1463–1475, 1963.

Скрыть метаданые