Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Williams, Charles A.
Автор Richardson, Randall M.
Дата выпуска 1991
dc.description Three‐dimensional kinematic finite element models of the San Andreas fault in central and southern California have been used to estimate the effects of rheological parameters and fault slip distribution on the horizontal and vertical deformation in the vicinity of the fault. The models include the effects of vertically layered power law viscoelastic rheology, and isostatic forces are considered in calculations of vertical uplift. Several different rheological layering schemes are used, using laboratory results on rock rheology to define the properties of the various layers. The depth to which the fault remains locked between earthquakes (D) is held constant at 20 km for the entire locked portion of the fault between Cholame and the Salton Sea. Between Hollister and Cholame the entire fault is assumed to slip at a rate consistent with a relative plate velocity of 35 mm/yr along a direction striking N41°W. Steady aseismic slip corresponding to plate velocity is imposed below the fault locking depth to a depth H on the locked section of the fault. The depth to which aseismic slip occurs (H) is assigned a value of either 20 km or 40 km, resulting in two versions of each rheological model. Variations in the model parameters are found to produce distinctive deformation patterns, providing a means for differentiating between models. Specifically, lower effective viscosities near the surface result in increased strain rates and uplift rates at all times during the earthquake cycle. Lower effective viscosities also produce subsidence near the creeping portion of the fault. Models that do not include aseismic slip below the fault locking depth (H = 20 km) display greater time dependence in both horizontal and vertical deformation than those including aseismic slip below the locking depth (H = 40 km). These differences are due, in part, to the time‐invariant nature of the imposed slip condition. The differences are more pronounced as the effective viscosity close to the surface is increased. The vertical uplift rate is particularly sensitive to the depth of aseismic slip (H) at the two bends in the fault, especially for models with high effective viscosities below the surface. For models in which the effective viscosity near the surface is relatively low, measurements of total uplift at the two bends in the fault could provide sufficient resolution to distinguish between models with and without aseismic slip over time periods of 10 to 20 years or more with current abilities to measure vertical uplift. Among our San Andreas fault models, the one most consistent with current strain rate data includes aseismic slip between 20 and 40 km (H = 40 km) and uses assumed rheological properties from the surface to 100 km depth consistent with laboratory results for wet rock samples. The rheological parameters for this model are based on laboratory results for the following rock types wet granite in the upper crust (0 to 20 km), wet diabase in the lower crust (20 to 40 km), wet dunite in the upper mantle (40 to 100 km), and dry olivine below 100 km. These modeling results are preliminary, however, and several additional factors should be considered prior to constructing a comprehensive model. Furthermore, it should be emphasized that the present models represent a small subset of possible rheological models, and numerous other models may provide similar or better fits to the data. The field of possible models will continue to narrow with further knowledge of the variations in Earth composition and temperature with depth, with more information on rock rheology, and with further observations of the earthquake cycle.
Формат application.pdf
Копирайт Copyright 1991 by the American Geophysical Union.
Тема EXPLORATION GEOPHYSICS
Тема Continental structures
Тема Continental structures
Тема GEODESY AND GRAVITY
Тема Rheology of the lithosphere and mantle
Тема MARINE GEOLOGY AND GEOPHYSICS
Тема Plate tectonics
Тема STRUCTURAL GEOLOGY
Тема Continental neotectonics
Тема Rheology: crust and lithosphere
Тема Rheology: general
Тема Rheology: mantle
Тема TECTONOPHYSICS
Тема Plate boundary: general
Тема Continental neotectonics
Тема Continental tectonics: extensional
Тема Continental tectonics: general
Тема Rheology: crust and lithosphere
Тема Rheology: general
Тема Rheology: mantle
Название A rheologically layered three‐dimensional model of the San Andreas Fault in central and southern California
Тип article
DOI 10.1029/91JB01484
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 96
Первая страница 16597
Последняя страница 16623
Выпуск B10
Библиографическая ссылка Birch, F., Compressibility; elastic constants, Handbook of Physical ConstantsS. P.ClarkJr., Mem. Geol. Soc. Am., 97, 97–173, 1966.
Библиографическая ссылка Bird, P., New finite element techniques for modeling deformation histories of continents with stratified temperature‐dependent rheology, J. Geophys. Res., 94, 3967–3990, 1989.
Библиографическая ссылка Brune, J. N., T. L.Henyey, R. F.Roy, Heat flow, stress, and rate of slip along the San Andreas fault, California, J. Geophys. Res., 74, 3821–3827, 1969.
Библиографическая ссылка Byerlee, J. D., Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.
Библиографическая ссылка Carter, N. L., D. A.Anderson, F. D.Hansen, R. L.Kranz, Creep and creep rupture of granitic rocks, Mechanical Behavior of Crustal Rocks Geophys. Monogr. Ser., 24N. L.Carter, M.Friedman, J. M.Logan, D. W.Stearns, 61–82, AGU, Washington, D.C., 1981.
Библиографическая ссылка Chapman, D. S., Thermal gradients in the continental crust, The Nature of the Lower Continental CrustJ. B.Dawson, D. A.Carswell, J.Hall, K. H.Wedepohl, Spec. Publ. Geol. Soc. Am., 24, 63–70, 1986.
Библиографическая ссылка Chen, W.‐P., P.Molnar, Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere, J. Geophys. Res., 88, 4183–4214, 1983.
Библиографическая ссылка Craymer, M. R., P.Vanícĕk, Comment on “Saugus‐Palmdale, California, field test for refraction error in historical leveling surveys” by R. S. Stein, C. T. Whalen, S. R. Holdahl, W. E. Strange, and W. Thatcher, and reply to “Comment on ‘Further analysis of the 1981 southern California field test for levelling refraction by M. R. Craymer and P. Vanícĕk’ by R. S. Stein, C. T. Whalen, S. R. Holdahl, W. E. Strange, and W. Thatcher,”, J. Geophys. Res., 94, 7667–7672, 1989.
Библиографическая ссылка Davis, J. L., W. H.Prescott, J. L.Svarc, K. J.Wendt, Assessment of global positioning system measurements for studies of crustal deformation, J. Geophys. Res., 94, 13,635–13,650, 1989.
Библиографическая ссылка DeMets, C., R. G.Gordon, S.Stein, D. F.Argus, A revised estimate of Pacific‐North America motion and implications for western North America plate boundary zone tectonics, Geophys. Res. Lett., 14, 911–914, 1987.
Библиографическая ссылка DeMets, C., R. G.Gordon, D. F.Argus, S.Stein, Current plate motions, Geophys. J. Int., 101, 425–478, 1990.
Библиографическая ссылка Desai, C. S., Elementary Finite Element Method, 434, Prentice‐Hall, Englewood Cliffs, N. J., 1979.
Библиографическая ссылка Gordon, R. B., Diffusion creep in the Earth's mantle, J. Geophys. Res., 70, 2413–2418, 1965.
Библиографическая ссылка Gordon, R. B., Thermally activated processes in the Earth: Creep and seismic attenuation, Geophys. J., 14, 33–43, 1967.
Библиографическая ссылка Haskell, N. A., The motion of a viscous fluid under a surface load, Physics, 6, 265–269, 1935.
Библиографическая ссылка Haskell, N. A., The motion of a viscous fluid under a surface load, part II, Physics, 7, 56–61, 1936.
Библиографическая ссылка Jackson, D. D., Marginal solutions to quasi‐linear inverse problems in geophysics: the edgehog method, Geophys. J. R. Astron. Soc., 35, 121–136, 1973.
Библиографическая ссылка Jones, L. M., Focal mechanisms and the state of stress on the San Andreas fault in southern California, J. Geophys. Res., 93, 8869–8891, 1988.
Библиографическая ссылка King, N. E., J. C.Savage, Strain‐rate profile across the Elsinore, San Jacinto, and San Andreas faults near Palm Springs, California, 1973–81, Geophys. Res. Lett., 10, 55–57, 1983.
Библиографическая ссылка King, N. E., P.Segall, W.Prescott, Geodetic measurements near Parkfield, California, 1959–1984, J. Geophys. Res., 92, 2747–2766, 1987.
Библиографическая ссылка Kirby, S. H., Rheology of the lithosphere, Rev. Geophys. Space Phys., 21, 1458–1487, 1983.
Библиографическая ссылка Kirby, S. H., Rock mechanics observations pertinent to the rheology of the continental lithosphere and the localization of strain along shear zones, Tectonophysics, 119, 1–27, 1985.
Библиографическая ссылка Kirby, S. H., A. K.Kronenberg, Rheology of the lithosphere: selected topics, Rev. Geophys., 25, 1219–1244, 1987a.
Библиографическая ссылка Kirby, S. H., A. K.Krohenberg, Correction to “Rheology of the lithosphere: selected topics,”, Rev. Geophys., 25, 1680–1681, 1987b.
Библиографическая ссылка Kusznir, N. J., G.Kamer, Dependence of the flexural rigidity of the continental lithosphere on rheology and temperature, Nature, 316, 138–142, 1985.
Библиографическая ссылка Kusznir, N. J., R. G.Park, Continental lithosphere strength: the critical role of lower crustal deformation, The Nature of the Lower Continental CrustJ. B.Dawson, D. A.Carswell, J.Hall, K. H.Wedepohl, Spec. Pub. Geol. Soc. Am., 24, 79–93, 1986.
Библиографическая ссылка Lachenbruch, A. H., J. H.Sass, Thermo‐mechanical aspects of the San Andreas fault system, Proceedings of the Conference on the Tectonic Problems of the San Andreas Fault System, 192–205, Stanford University Press, Palo Alto, Calif., 1973.
Библиографическая ссылка Lachenbruch, A. H., J. H.Sass, Models of an extending lithosphere and heat flow in the Basin and Range province, Mem. Geol. Soc. Am., 152, 209–250, 1978.
Библиографическая ссылка Lachenbruch, A. H., J. H.Sass, Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85, 6185–6222, 1980.
Библиографическая ссылка Li, V. C., H. S.Lim, Modeling surface deformations at complex strike‐slip plate boundaries, J. Geophys. Res., 93, 7943–7954, 1988.
Библиографическая ссылка Li, V. C., J. R.Rice, Crustal deformation in great California earthquake cycles, J. Geophys. Res., 92, 11,533–11,551, 1987.
Библиографическая ссылка McGarr, A., On the state of lithospheric stress in the absence of applied tectonic forces, J. Geophys. Res., 93, 13,609–13,617, 1988.
Библиографическая ссылка Meissner, R., J.Strehlau, Limits of stresses in continental crusts and their relation to the depth‐frequency distribution of shallow earthquakes, Tectonics, 1, 73–89, 1982.
Библиографическая ссылка Melosh, H. J., Rheology of the Earth: Theory and observation, Physics of the Earth's InteriorA. M.Dziewonski, E.Boschi, 318–335, North‐Holland, New York, 1980.
Библиографическая ссылка Melosh, H. J., Mechanical basis for low‐angle normal faulting in the Basin and Range province, Nature, 343, 331–335, 1990.
Библиографическая ссылка Melosh, H. J., A.Raefsky, The dynamical origin of subduction zone topography, Geophys. J. R. Astron. Soc., 60, 333–354, 1980.
Библиографическая ссылка Melosh, H. J., A.Raefsky, A simple and efficient method for introducing faults into finite element computations, Bull. Seismol. Soc. Am., 71, 1391–1400, 1981.
Библиографическая ссылка Melosh, H. J., C. A.Williams, Mechanics of graben formation in crustal rocks: A finite element analysis, J. Geophys. Res., 94, 13,961–13,973, 1989.
Библиографическая ссылка Minster, J. B., T. H.Jordan, Vector constraints on western U.S. deformation from space geodesy, neotectonics, and plate motions, J. Geophys. Res., 92, 4798–4804, 1987.
Библиографическая ссылка Mount, V. S., J.Suppe, State of stress near the San Andreas fault: implications for wrench tectonics, Geology, 15, 1143–1146, 1987.
Библиографическая ссылка Nur, A., G.Mavko, Postseismic viscoelastic rebound, Science, 183, 204–206, 1974.
Библиографическая ссылка Prescott, W. H., J. C.Savage, Strain accumulation on the San Andreas fault near Palmdale, California, J. Geophys. Res., 81, 4901–4908, 1976.
Библиографическая ссылка Prescott, W. H., J. C.Savage, W. T.Kinoshita, Strain accumulation rates in the western United States between 1970 and 1978, J. Geophys. Res., 84, 5423–5435, 1979.
Библиографическая ссылка Ranalli, G., D. C.Murphy, Rheological stratification of the lithosphere, Tectonophysics, 132, 281–295, 1987.
Библиографическая ссылка Reid, H. F., Permanent displacements of the ground, The California Earthquake of April 18, 1906, Report of the State Earthquake Investigation Commission, 2, 16–28, Camegie Institution of Washington, Washington, D.C., 1910.
Библиографическая ссылка Reid, H. F., The elastic‐rebound theory of earthquakes, Univ. Calif. Publ. Geol. Sci., 6, 413–444, 1911.
Библиографическая ссылка Rundle, J. B., An approach to modeling present‐day deformation in southern California, J. Geophys. Res., 91, 1947–1959, 1986.
Библиографическая ссылка Rundle, J. B., A physical model for earthquakes, 1, Fluctuations and interactions, J. Geophys. Res., 93, 6237–6254, 1988a.
Библиографическая ссылка Rundle, J. B., A physical model for earthquakes, 2, Application to southern California, J. Geophys. Res., 93, 6255–6274, 1988b.
Библиографическая ссылка Savage, J. C., Strain accumulation in the western United States, Annu. Rev. Earth Planet. Sci., 11, 11–43, 1983.
Библиографическая ссылка Savage, J. C., Equivalent strike‐slip earthquake cycles in half‐space and lithosphere‐asthenosphere Earth models, J. Geophys. Res., 95, 4873–4879, 1990.
Библиографическая ссылка Savage, J. C., W. H.Prescott, Asthenosphere readjustment and the earthquake cycle, J. Geophys. Res., 83, 3369–3376, 1978.
Библиографическая ссылка Savage, J. C., W. H.Prescott, M.Lisowski, N. E.King, Strain accumulation in southern California, 1973–1980, J. Geophys. Res., 86, 6991–7001, 1981.
Библиографическая ссылка Savage, J. C., W. H.Prescott, G.Gu, Strain accumulation in southern California, 1973–1984, J. Geophys. Res., 91, 7455–7473, 1986.
Библиографическая ссылка Schatz, J. F., G.Simmons, Thermal conductivity of Earth materials at high temperatures, J. Geophys. Res., 77, 6966–6983, 1972.
Библиографическая ссылка Shelton, G. L., J.Tullis, Experimental flow laws for crustal rocks (abstract), Eos Trans. AGU, 62, 396, 1981.
Библиографическая ссылка Sibson, R. H., Fault zone models, heat flow, and the depth distribution of earthquakes in the continental crust of the United States, Bull. Seismol. Soc. Am., 72, 151–163, 1982.
Библиографическая ссылка Sieh, K. E., Slip along the San Andreas fault associated with the great 1857 earthquake, Bull. Seismol. Soc. Am., 68, 1421–1448, 1978.
Библиографическая ссылка Sieh, K., M.Stuiver, D.Brillinger, A more precise chronology of earthquakes produced by the San Andreas fault in southern California, J. Geophys. Res., 94, 603–623, 1989.
Библиографическая ссылка Spence, D. A., D. L.Turcotte, Viscoelastic relaxation of cyclic displacements on the San Andreas fault, Proc. R. Soc. London Ser. A, 365, 121–149, 1979.
Библиографическая ссылка Stein, R. S., Contemporary plate motion and crustal deformation, Rev. Geophys., 25, 855–863, 1987.
Библиографическая ссылка Stein, R. S., C. T.Whalen, S. R.Holdahl, W. E.Strange, W.Thatcher, Reply to “Comment on ‘Saugus‐Palmdale, California, field test for refraction error in historical leveling surveys’ by R.S. Stein, C. T. Whalen, S. R. Holdahl, W. E. Strange, and W. Thatcher” by Michael R. Craymer and Peter Vanícĕk and comment on ‘Further analysis of the 1981 southern California field test for leveling refraction’ by M. R. Craymer and P. Vanícĕk,”, J. Geophys. Res., 94, 7673–7677, 1989.
Библиографическая ссылка Strehlau, J., R.Meissner, Estimation of crustal viscosities and shear stresses from an extrapolation of experimental steady state flow data, Composition, Structure and Dynamics of the Lithosphere‐Asthenosphere System Geodyn. Ser., 16K.Fuchs, C.Froidevaux, 69–87, AGU, Washington, D.C., 1987.
Библиографическая ссылка Thatcher, W., Nonlinear strain buildup and the earthquake cycle on the San Andreas fault, J. Geophys. Res., 88, 5893–5902, 1983.
Библиографическая ссылка Thatcher, W., J. B.Rundle, A viscoelastic coupling model for the cyclic deformation due to periodically repeated earthquakes at subduction zones, J. Geophys. Res., 89, 7631–7640, 1984.
Библиографическая ссылка Tse, S. T., J. R.Rice, Crustal earthquake instability in relation to the depth variation of frictional slip properties, J. Geophys. Res., 91, 9452–9472, 1986.
Библиографическая ссылка Turcotte, D. L., G.Schubert, Geodynamics Applications of Continuum Physics to Geological Problems, 450, John Wiley, New York, 1982.
Библиографическая ссылка Ward, P. L., R. A.Page, The Loma Priers Earthquake of October 17, 1989, pamphletL. D.Hodgen, J. A.Troll, 16, U.S. Geol. Surv., Menlo Park, Calif., 1989.
Библиографическая ссылка Weertman, J., The creep strength of the Earth's mantle, Rev. Geophys., 8, 145–168, 1970.
Библиографическая ссылка Wesnousky, S. G., Earthquakes, Quaternary faults, and seismic hazard in California, J. Geophys. Res., 91, 12,587–12,631, 1986.
Библиографическая ссылка Williams, C. A., R. M.Richardson, A nonlinear least‐squares inverse analysis of strike‐slip faulting with application to the San Andreas fault, Geophys. Res. Lett., 15, 1211–1214, 1988.
Библиографическая ссылка Zoback, M. D., M. L.Zoback, V. S.Mount, J.Suppe, J. P.Eaton, J. H.Healy, D.Oppenheimer, P.Reasenberg, L.Jones, C. B.Raleigh, I. G.Wong, O.Scotti, C.Wentworth, New evidence on the state of stress of the San Andreas fault system, Science, 238, 1105–1111, 1987.

Скрыть метаданые