Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Mayeda, Kevin
Автор Koyanagi, Stuart
Автор Hoshiba, Mitsuyuki
Автор Aki, Keiiti
Автор Zeng, Yuehua
Дата выпуска 1992
dc.description A new method recently developed by Hoshiba et al. (1991) was used to separate the effects of scattering Q<sup>−1</sup> and intrinsic Q<sup>−1</sup> from an analysis of the S wave and its coda in Hawaii, Long Valley, and central California. Unlike the method of Wu [1985], which involves integration of the entire S wave energy, the new method relies on the integration of the S wave energy for three successive time windows as a function of hypocentral distance. Using the fundamental separability of source, site, and path effects for coda waves, we normalized the energy in each window for many events recorded at many stations to a common site and source. We plotted the geometric spreading‐corrected normalized energy as a function of hypocentral distance. The data for all three time windows were then simultaneously fit to Monte Carlo simulations assuming isotropic body wave scattering in a medium of randomly and uniformly distributed scatterers and uniform intrinsic Q<sup>−1</sup>. In general, for frequencies less than or equal to 6.0 Hz, scattering Q<sup>−1</sup> was greater than intrinsic Q<sup>−1</sup>, whereas above 6.0 Hz the opposite was true. Model fitting was quite good for frequencies greater than or equal to 6.0 Hz at all distances, despite the model's simplicity. The small range in energy values for any particular time window demonstrates that the site effect can be effectively stripped away using the coda method. Though the model fitting generally worked for 1.5 and 3.0 Hz, the model has difficulty in fitting the whole distance range simultaneously, especially at short distances. Despite the poor fit at low frequency, the results generally support that in all three regions the scattering Q<sup>−1</sup> is strongly frequency dependent, decreasing proportional to frequency or faster, whereas intrinsic Q<sup>−1</sup> is considerably less frequency dependent. This suggests that the scale length of heterogeneity responsible for scattering is at least comparable to the wavelength for the lowest frequencies studied, of the order of a few kilometers. The lithosphere studied in all three regions can be characterized as a random medium with velocity fluctuation characterized by exponential or Gaussian autocorrelation functions which predict scattering. Q<sup>−1</sup> decreasing proportional to frequency or faster. For all frequencies the observed coda Q<sup>−1</sup> is intermediate between the total Q<sup>−1</sup> and expected coda Q<sup>−1</sup> in contrast with theoretical results for an idealized case of uniform distribution of scatterers and homogeneous absorption which predict that coda Q<sup>−1</sup> should be close to the intrinsic Q<sup>−1</sup>. We will discuss possible causes for this discrepancy.
Формат application.pdf
Копирайт Copyright 1992 by the American Geophysical Union.
Тема GEODESY AND GRAVITY
Тема Gravity anomalies and Earth structure
Тема Rheology of the lithosphere and mantle
Тема SEISMOLOGY
Тема Continental crust
Тема Oceanic crust
Тема Lithosphere
Тема General or miscellaneous
Название A comparative study of scattering, intrinsic, and coda Q<sup>−1</sup> for Hawaii, Long Valley, and central California between 1.5 and 15.0 Hz
Тип article
DOI 10.1029/91JB03094
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 97
Первая страница 6643
Последняя страница 6659
Выпуск B5
Библиографическая ссылка Abubakirov, I. R., A. A.Gusev, Estimation of scattering properties of lithosphere of Kamchatka based on Monte‐Carlo simulation of record envelope of a near earthquake, Phys. Earth Planet. Inter., 64, 52–67, 1990.
Библиографическая ссылка Aki, K., Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Inter., 21, 50–60, 1980.
Библиографическая ссылка Aki, K., Summary of discussions on coda waves at the Istanbul IASPEI meeting, Phys. Earth Planet. Inter., 67, 1–3, 1991.
Библиографическая ссылка Aki, K., B.Chouet, Origin of coda waves: Source, attenuation, and scattering effects, J. Geophys. Res., 80, 3322–3342, 1975.
Библиографическая ссылка Benites, R., Seismological applications of boundary integral and Gaussian beam methods, Ph.D. thesis,Mass. Inst. of Technol.,Cambridge,1990.
Библиографическая ссылка Chouet, B. A., Source, scattering, and attenuation effects on high frequency seismic waves, Ph.D. thesis,Mass. Inst. of Technol.,Cambridge,1976.
Библиографическая ссылка Eaton, J. P., Response arrays and sensitivity coefficients for standard configurations of the USGS short‐period telemetered seismic system, U.S. Geol. Surv. Open File Rep.80‐316, 1980.
Библиографическая ссылка Fehler, M., M.Hoshiba, H.Sato, K.Obara, Separation of scattering and intrinsic attenuation for the Kanto‐Tokai region, Japan, using measurements of S wave energy vs hypocentral distance, Geophys. J. Int., 1992.
Библиографическая ссылка Frankel, A., R. W.Clayton, Finite difference simulations of seismic scattering: Implications for the propagation of short period seismic waves in the crust and models of crustal heterogeneity, J. Geophys. Res., 91, 6465–6490, 1986.
Библиографическая ссылка Frankel, A., L.Wennerberg, Energy‐flux model of seismic coda: Separation of scattering and intrinsic attenuation, Bull. Seismol. Soc. Am., 77, 1223–1251, 1987.
Библиографическая ссылка Gao, L. S., L. C.Lee, N. N.Biswas, K.Aki, Comparison of the effects between single and multiple scattering on coda waves for local earthquakes, Bull. Seismol. Soc. Am., 73, 377–390, 1983.
Библиографическая ссылка Gusev, A. A., I. R.Abubakirov, Monte‐Carlo simulation of record envelope of a near earthquake, Phys. Earth Planet. Inter., 49, 30–36, 1987.
Библиографическая ссылка Hill, D. P., Structure of Long Valley caldera, California, from a seismic reflection experiment, J. Geophys. Res., 81, 745–753, 1976.
Библиографическая ссылка Hoshiba, M., Simulation of multiple scattered coda wave excitation based on the energy conservation law, Phys. Earth Planet. Inter., 67, 123–136, 1991.
Библиографическая ссылка Hoshiba, M., H.Sato, M.Fehler, Numerical basis of the separation of scattering and intrinsic absorption from full seismogram envelope: A Monte‐Carlo simulation of multiple isotropic scattering, Pap. Meteorol. Geophys., 42, 65–91, 1991.
Библиографическая ссылка Ishimaru, A., Wave Propagation and Scattering in Random Media, , 1 and 2, Academic, San Diego, Calif., 1978.
Библиографическая ссылка Koyanagi, S., K.Mayeda, K.Aki, Frequency‐dependent site amplification factors using the S‐wave coda for the Island of Hawaii, Bull. Seismol. Soc. Am., 1992.
Библиографическая ссылка Matsunami, K., Laboratory tests of excitation and attenuation of coda waves using 2‐D models of scattering media, Phys. Earth Planet. Inter., 67, 36–47, 1991.
Библиографическая ссылка Mayeda, K., F.Su, K.Aki, Seismic albedo from the total seismic energy dependence on hypocentral distance in southern California, Phys. Earth Planet. Inter., 67, 104–114, 1991a.
Библиографическая ссылка Mayeda, K., S.Koyanagi, K.Aki, Site amplification from S wave coda in the Long Valley Caldera region, California, Bull. Seismol. Soc. Am., 81, 2194–2213, 1991b.
Библиографическая ссылка McSweeney, T., N.Biswas, K.Mayeda, K.Aki, Scattering and anelastic attenuation of seismic energy in central and south central Alaska, Phys. Earth Planet. Inter., 67, 115–122, 1991.
Библиографическая ссылка Nakata, J., R.Koyanagi, W.Tanigawa, A.Tomori, Hawaii Volcano Observatory, summary 85 ‐ seismic data January to December 1985, reportU.S. Geol. Surv., Reston, VA, 1987.
Библиографическая ссылка Peng, J. Y., K.Aki, B.Chouet, P.Johnson, W. H. K.Lee, S.Marks, J. T.Newberry, A. S.Ryall, S.Stewart, D. M.Tottingham, Temporal change in coda Q associated with the Round Valley, California, earthquake of November 23, 1984, J. Geophys. Res., 92, 3507–3526, 1987.
Библиографическая ссылка Phillips, W. S., The separation of source, path and site effects on high frequency seismic waves: An analysis using coda wave techniques, Ph.D. thesis,Mass. Inst. of Technol.,Cambridge,1985.
Библиографическая ссылка Phillips, W. S., W. H. K.Lee, J. T.Newberry, Spatial variation of crustal coda Q in California, Pure Appl. Geophys., 128, 251–260, 1988.
Библиографическая ссылка Rautian, T. G., V. I.Khalturin, The use of the coda for the determination of the earthquake source spectrum, Bull. Seismol. Soc. Am., 68, 923–948, 1978.
Библиографическая ссылка Sato, H., Energy propagation including scattering effects: Single scattering approximation, J. Phys. Earth, 25, 27–41, 1977.
Библиографическая ссылка Sato, H., Attenuation of S waves in the lithosphere due to scattering by its random velocity structure, J. Geophys. Res., 87, 7779–7785, 1982.
Библиографическая ссылка Sato, H., Temporal change in scattering and attenuation associated with the earthquake occurrence — A review of recent studies on coda waves, pure Appl. Geophys., 126, 465–498, 1988.
Библиографическая ссылка Shang, T., L.Gao, Transportation theory of multiple scattering and its application to seismic coda waves of impulsive source, Sci. Sin., Ser. B, 31, 1503–1514, 1988.
Библиографическая ссылка Singh, S., R. B.Herrmann, Regionalization of crustal coda Q in the continental United States, J. Geophys. Res., 88, 527–538, 1983.
Библиографическая ссылка Taylor, S., B.Bonner, G.Zandt, Attenuation and scattering of broadband P and S waves across North America, J. Geophys. Res., 91, 7309–7325, 1986.
Библиографическая ссылка Toksöz, M., A.Dainty, E.Reiter, R. S.Wu, A model for attenuation and scattering in the Earth's crust, Pure Appl. Geophys., 128, 81–100, 1988.
Библиографическая ссылка Varadan, V. K., V. V.Varadan, Y. H.Pao, Multiple scattering of elastic waves by cylinders of arbitrary cross section, I, SH waves, J. Acoust. Soc. Am., 635, 1310–1319, 1978.
Библиографическая ссылка Wu, R. S., Attenuation of short‐period seismic waves due to scattering, Geophys. Res. Lett., 9, 9–12, 1982.
Библиографическая ссылка Wu, R. S., Multiple‐scattering and energy transfer of seismic waves — Separation of scattering effect from the intrinsic attenuation, I, Theoretical modeling, Geophys. J. R. Astron. Soc., 82, 57–80, 1985.
Библиографическая ссылка Wu, R. S., K.Aki, Multiple scattering and energy transfer of seismic waves — Separation of scattering effect from intrinsic attenuation, II, Application of the theory to Hindu Kush region, Pure Appl. Geophys., 128, 49–80, 1988.
Библиографическая ссылка Zeng, Y., F.Su, K.Aki, Scattering wave energy propagation in a medium with randomly distributed isotropic scatterers, 1, Theory, J. Geophys. Res., 96, 607–619, 1991.

Скрыть метаданые