Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Spray, John G.
Дата выпуска 1993
dc.description Analytical scanning electron microscopy has been used to determine the major element compositions of some natural and artificial silicate glasses and their microcrystalline equivalents derived by the frictional melting of intermediate to acid protoliths. The data show that the matrices of the friction melts (which cool to form pseudotachylytes) are relatively basic and hydrous, even when their protoliths are intermediate to acid. This is because frictional fusion involves the selective comminution and nonequilibrium melting of minerals based on their individual mechanical properties and melting points, not the formation of minimum melts through equilibrium mineral interaction. This means that hydrous ferromagnesian minerals (e.g., micas and amphiboles) melt preferentially to form the liquid matrix, while feldspars and especially quartz more readily survive as clasts. Pseudotachylytes generated by frictional melting are therefore not bulk melts, and as clast‐melt suspensions, they cannot be considered as simple Newtonian fluids. The calculated viscosities of the friction melts are low. For example, at 1200°C, most friction melts possess zero‐shear suspension viscosities of 10<sup>2</sup>–10<sup>4</sup> dPa s (1 dPa s = 1 P). This is equivalent to the viscosities of tholeiitic and alkaline basaltic magmas at the same temperature. These viscosities are maximum determinations because, as clast‐melt suspensions, friction melts may undergo shear thinning and exhibit pseudoplasticity at high shear rates (i.e., during slip on a fault surface). Contrary to earlier suggestions, where the bulk melting of intermediate to acid protoliths was believed to result in the generation of viscous friction melts that could act to inhibit continued sliding, this work shows that most pseudotachylytes are partial melts possessing low viscosities. The formation of highly fluid suspensions during slip may have profound effects on the dissipation of stored strain energy in the rocks surrounding a fault. Interface lubrication could facilitate an increase in the slip rate and the rate of energy dissipation. This would be manifest as an increase in high‐frequency seismic wave radiation and vibrational.
Формат application.pdf
Копирайт Copyright 1993 by the American Geophysical Union.
Тема GEODESY AND GRAVITY
Тема Seismic cycle related deformations
Тема MINERALOGY AND PETROLOGY
Тема Mineralogy, Petrology, and Rock Chemistry: Igneous petrology
Тема SEISMOLOGY
Тема Earthquake dynamics
Тема STRUCTURAL GEOLOGY
Тема Structural geology
Тема VOLCANOLOGY
Тема Physics and chemistry of magma bodies
Название Viscosity determinations of some frictionally generated silicate melts: Implications for fault zone rheology at high strain rates
Тип article
DOI 10.1029/93JB00020
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 98
Первая страница 8053
Последняя страница 8068
Выпуск B5
Библиографическая ссылка Anderson, A. T., S.Newman, S. N.Williams, T. H.Druitt, C.Skirius, E.Stolper, H<sub>2</sub>O, CO<sub>2</sub>, Cl, and gas in Plinian and ash‐flow Bishop rhyolite, Geology, 17, 221–225, 1989.
Библиографическая ссылка Barnes, H. A., J. F.Hutton, K.Walters, An Introduction to Rheology, 199, Elsevier, New York, 1989.
Библиографическая ссылка Bottinga, Y., D. F.Weill, The viscosity of magmatic silicate liquids: A model for calculation, Am. J. Sci., 272, 438–475, 1972.
Библиографическая ссылка , British Ordnance Survey,Benbecula, Landranger Series, sheet 22, scale 1:50,000 ,South Hampton,1976.
Библиографическая ссылка , British Ordnance Survey,Tarbert and Loch Seaforth, Landranger Series, sheet 14, scale 1:50,000 ,South Hampton,1984.
Библиографическая ссылка Brune, J. N., The physics of earthquake strong motion, Seismic Risk and Engineering DecisionC.Lomnitz, E.Rosenblueth, 141–147, Elsevier, New York, 1976.
Библиографическая ссылка Burnham, C. W., Thermodynamics of melting in experimental silicate‐volatile systems, Geochim. Cosmochim. Acta, 39, 1077–1084, 1975.
Библиографическая ссылка Dingwell, D. B., D.Virgo, The effect of oxidation state on the viscosity of melts in the system Na<sub>2</sub>O‐FeO‐Fe<sub>2</sub>O<sub>3</sub>‐SiO<sub>2</sub>, Geochim. Cosmochim. Acta, 51, 195–205, 1987.
Библиографическая ссылка Dingwell, D. B., D.Virgo, Viscosities of melts in the Na<sub>2</sub>O‐FeO‐Fe<sub>2</sub>O<sub>3</sub>‐SiO<sub>2</sub> system and factors controlling relative viscosities of fully polymerized silicate melts, Geochim. Cosmochim. Acta, 52, 395–403, 1988.
Библиографическая ссылка Dressier, B. O., The effects of the Sudbury event and the intrusion of the Sudbury Igneous Complex on the footwall rocks of the Sudbury Structure, The Geology and Ore Deposits of the Sudbury Structure, , 1E. G.Pye, A. J.Naldrett, P. E.Giblin, 97–136, Ontario Geological Survey, Toronto, Canada, 1982.
Библиографическая ссылка Erismann, T. H., Mechanisms of large landslides, Rock Mech., 12, 15–46, 1979.
Библиографическая ссылка Goodhew, P. J., Electron probe microanalysis of glasses containing alkali metals, Microstruct. Science, 3, 631–641, 1975.
Библиографическая ссылка James, O. B., M. K.Flohr, M. M.Lindstrom, Petrology and geochemistry of Lunar dimict breccia 61015, J. Geophys. Res., 89, C63–C86, 1984.
Библиографическая ссылка Jeffrey, D. J., A.Acrivos, The rheological properties of suspensions of rigid particles, AIChE J., 22, 417–442, 1976.
Библиографическая ссылка Jeffreys, H., The Earth: Its Origin, History and Physical Constitution6th ed., 574, Cambridge University Press, New York, 1976.
Библиографическая ссылка Kitano, T., T.Kataoka, T.Shirota, An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta, 20, 207–209, 1981.
Библиографическая ссылка Kraynik, A. M., Foam flows, Annu. Rev. Fluid Mech., 20, 325–357, 1988.
Библиографическая ссылка Lineweaver, J. L., Oxygen outgassing caused by electron bombardment of glass, J. Appl. Phys., 34, 1786–1791, 1962.
Библиографическая ссылка Lloyd, G. E., Atomic number and crystallographic contrast images with SEM: A review of backscattered electron techniques, Mineral. Mag., 51, 3–19, 1987.
Библиографическая ссылка Maddock, R. H., Melt origin of fault‐generated pseudotachylytes demonstrated by textures, Geology, 11, 105–108, 1983.
Библиографическая ссылка Magloughlin, J. F., Nature and significance of pseudotachylite from the Nason Terrane, North Cascade Mountains, Washington, J. Struct. Geol., 11, 907–917, 1989.
Библиографическая ссылка Marsh, B. D., On the crystallinity, probability of occurrence, and rheology of lava and magma, Contrib. Mineral. Petrol., 78, 85–98, 1981.
Библиографическая ссылка McBirney, A. R., T.Murase, Rheological properties of magmas, Annu. Rev. Earth Planet. Sci., 12, 337–357, 1984.
Библиографическая ссылка McKenzie, D. P., J. N.Brune, Melting on fault planes during large earthquakes, Geophys. J. R. Astron. Soc., 29, 65–78, 1972.
Библиографическая ссылка Metzner, A. B., Rheology of suspensions in polymeric liquids, J. Rheology, 29, 739–775, 1985.
Библиографическая ссылка Murase, T., A. R.McBirney, Properties of some common igneous rocks and their melts at high temperatures, Geol. Soc. Am. Bull., 84, 3563–3592, 1973.
Библиографическая ссылка Mysen, B. O., Structure and Properties of Silicate Melts, 354, Elsevier, New York, 1988.
Библиографическая ссылка Nielsen, C. H., H.Sigurdsson, Quantitative methods for electron microprobe analysis of sodium in natural and synthetic systems, Am. Mineral., 66, 547–552, 1981.
Библиографическая ссылка Philpotts, A. R., J. A.Miller, A Pre‐Cambrian glass from St. Alexis‐des‐Monts, Quebec, Geol. Mag., 100, 337–344, 1963.
Библиографическая ссылка Scholz, C. H., The Mechanics of Earthquakes and Faulting, 439, Cambridge University Press, New York, 1990.
Библиографическая ссылка Schwarzman, E. C., C. E.Meyer, H. G.Wilshire, Pseudotachylite from the Vredefort Ring, South Africa, and the origins of Lunar Breccias, Geol. Soc. Am. Bull., 94, 926–935, 1983.
Библиографическая ссылка Shand, S. J., The pseudotachylyte of Parijs (Orange Free State), and its relation to “trap‐shotten gneiss” and “flinty crush‐rock”, Q. J. Geol. Soc. London, 72, 198–221, 1916.
Библиографическая ссылка Shaw, H. R., Viscosities of magmatic silicate liquids: An empirical method of prediction, Am. J. Sci., 272, 870–893, 1972.
Библиографическая ссылка Sibson, R. H., Generation of pseudotachylyte by ancient seismic faulting, Geophys. J. R. Astron. Soc., 43, 775–794, 1975.
Библиографическая ссылка Spray, J. G., Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane, J. Struct. Geol., 7, 49–60, 1987.
Библиографическая ссылка Spray, J. G., Generation and crystallization of an amphibolite shear melt: An investigation using radial friction welding apparatus, Contrib. Mineral. Petrol., 99, 464–475, 1988.
Библиографическая ссылка Spray, J. G., A physical basis for the frictional melting of some rock‐forming minerals, Tectonophysics, 204, 205–221, 1992.
Библиографическая ссылка Statham, P. J., T.Nashashibi, The impact of low‐noise design on X‐ray microanalytical performance, Microbeam AnalysisD. E.Newbury, 50–54, San Francisco Press, San Francisco, Calif., 1988.
Библиографическая ссылка Stolper, E., Water in silicate glasses: an infrared spectroscopic study, Contrib. Mineral. Petrol., 81, 1–17, 1982.
Библиографическая ссылка Taylor, G. J., P.Warren, J. D.Ryder, C.Pieters, G.Lofgren, Lunar Rocks (Chapter 6), Lunar Sourcebook. A User's Guide to the MoonG. H.Heiken, D. T.Vaniman, B. M.French, 183–284, Cambridge University Press, New York, 1991.
Библиографическая ссылка Toyoshima, T., Pseudotachylite from the Main Zone of the Hidaka metamorphic belt, Hokkaido, northern Japan, J. Metamorph. Geol., 8, 507–523, 1990.
Библиографическая ссылка Vassamillet, L. F., V. E.Caldwell, Electron‐probe microanalysis of alkali metals in glasses, J. Appl. Phys., 40, 1637–1643, 1969.
Библиографическая ссылка Zarzycki, J., Glasses and the Vitreous State, 505, Cambridge University Press, New York, 1991.

Скрыть метаданые