Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Felzer, Benjamin
Автор Hauff, Phoebe
Автор Goetz, Alexander F. H.
Дата выпуска 1994
dc.description Buddingtonite, an ammonium‐bearing feldspar diagnostic of volcanic‐hosted alteration, can be identified and, in some cases, quantitatively measured using short‐wave infrared (SWIR) reflectance spectroscopy. In this study over 200 samples from Cuprite, Nevada, were evaluated by X ray diffraction, chemical analysis, scanning electron microscopy, and SWIR reflectance spectroscopy with the objective of developing a quantitative remote‐sensing technique for rapid determination of the amount of ammonium or buddingtonite present, and its distribution across the site. Based upon the Hapke theory of radiative transfer from particulate surfaces, spectra from quantitative, physical mixtures were compared with computed mixture spectra. We hypothesized that the concentration of ammonium in each sample is related to the size and shape of the ammonium absorption bands and tested this hypothesis for samples of relatively pure buddingtonite. We found that the band depth of the 2.12‐μm NH<sub>4</sub> feature is linearly related to the NH<sub>4</sub> concentration for the Cuprite buddingtonite, and that the relationship is approximately exponential for a larger range of NH<sub>4</sub> concentrations. Associated minerals such as smectite and jarosite suppress the depth of the 2.12‐μm NH<sub>4</sub> absorption band. Quantitative reflectance spectroscopy is possible when the effects of these associated minerals are also considered.
Формат application.pdf
Копирайт Copyright 1994 by the American Geophysical Union.
Тема ELECTROMAGNETICS
Тема Scattering and diffraction
Тема MINERAL PHYSICS
Тема Optical, infrared, and Raman spectroscopy
Тема Mineral Physics: X ray, neutron, and electron spectroscopy and diffraction
Тема RADIO SCIENCE
Тема Remote sensing
Название Quantitative reflectance spectroscopy of buddingtonite from the Cuprite mining district, Nevada
Тип article
DOI 10.1029/93JB02975
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Solid Earth
Том 99
Первая страница 2887
Последняя страница 2895
Выпуск B2
Библиографическая ссылка Bloomstein, E. I., Ammonium‐alteration is a geochemical link in gold deposits of the Carlin‐Midas Belt [abstr.], J. Geochem. Explor., 251–2, 239, 1986.
Библиографическая ссылка Boardman, J. W., Inversion of imaging spectrometry data using singular value decomposition, Proceedings of IGARSS, 2069–2072ESA Publications Division, Noordwijk, The Netherlands, 1989.
Библиографическая ссылка Clark, R. N., T. L.Roush, Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications, J. Geophys. Res., 89, 6329–6340, 1984.
Библиографическая ссылка Erd, R. C., D. E.White, J. J.Fahey, D. L.Lee, Buddingtonite, an ammonium feldspar with zeolitic water, Am. Mineral., 497–8, 831–850, 1964.
Библиографическая ссылка Goetz, A. F. H., The portable instant display and analysis spectrometer (PIDAS), Proceedings of the Third Airborne Imaging Spectrometer Data Analysis WorkshopJPL Publ., 87‐30, 8–17, 1987.
Библиографическая ссылка Goetz, A. F. H., V.Srivastava, Mineralogical mapping in the Cuprite mining district, Nevada, Proceedings of Airborne Imaging Spectrometer Data Analysis WorkshopG.Vane, A. F. H.Goetz, JPL Publ., 85‐41, 22–31, 1985.
Библиографическая ссылка Gulbrandson, R. A., Buddingtonite, ammonium feldspar, in the Phosporia Formation, southeastern Idaho, J. Res. U.S. Geol. Surv., 26, 693–697, 1974.
Библиографическая ссылка Hapke, B., Bidirectional reflectance spectroscopy, J. Geophys. Res., 86, 3039–3054, 1981.
Библиографическая ссылка Hapke, B., E.Wells, Bidirectional reflectance spectroscopy, 2, Experiments and observations, J. Geophys. Res., 86, 3055–3060, 1981.
Библиографическая ссылка Hunt, G. R., Spectral signatures of particulate minerals in the visible and near infrared, Geophysics, 423, 501–513, 1977.
Библиографическая ссылка Hunt, G. R., Near‐infrared (1.3–2.4 μm) spectra of alteration minerals — Potential for use in remote sensing, Geophysics, 4412, 1974–1986, 1979.
Библиографическая ссылка Johnson, P. E., M. O.Smith, S.Taylor‐George, J. B.Adams, A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures, J. Geophys. Res., 88, 3557–3561, 1983.
Библиографическая ссылка Klock, P. R., P. J.Lamothe, Determination of ammonium in a buddingtonite sample by ion‐chromatography, Talanta, 336, 495–498, 1986.
Библиографическая ссылка Krohn, M. D., S. P.Altaner, Near‐infrared detection of ammonium minerals, Geophysics, 527, 924–930, 1987.
Библиографическая ссылка Kruse, F. A., W. M.Calvin, O.Seznec, Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data, Proceedings of the 1st AVIRIS Data Evaluation WorkshopJPL Publ., 88‐38, 62–75, 1988.
Библиографическая ссылка Kruse, F. A., K. S.Kierein‐Young, J. W.Boardman, Mineral mapping at Cuprite, Nevada, with a 63‐channel imaging spectrometer, Photogramm. Eng. Remote Sens., 561, 83–92, 1990.
Библиографическая ссылка Mustard, J. F., C. M.Pieters, Photometric phase functions of common geologic minerals and applications( to quantitative analysis of mineral mixture reflectance spectra, J. Geophys. Res., 94, 13619–13634, 1989.
Библиографическая ссылка Shipman, H., J. B.Adams, Detectability of minerals on desert alluvial fans using reflectance spectra, J. Geophys. Res., 92, 10391–10402, 1987.

Скрыть метаданые