Автор |
Eriksen, Charles Curtis |
Дата выпуска |
1978 |
dc.description |
Measurements of horizontal and vertical current by propeller cluster current meters and temperature by thermistors mounted on a rigid array 8 m high and 20 m long moored in the oceanic main thermocline near Bermuda are interpreted in terms of thermocline‐trapped internal wave modes in the presence of temperature and velocity fine structure. The array was deployed roughly 250 m off the sloping bottom in water roughly 900 m deep on three occasions. Two‐turning‐point uniformly valid asymptotic solutions to the internal wave equation are developed to describe the wave functions. Mode decay beyond the turning point in depth or frequency produces a sharp cutoff in vertical current spectra above the local buoyancy frequency N(z). An internal wave wave number‐frequency spectral model E( α,ω) = E(ω/N<sub>0</sub>)<sup>−2</sup>(α/α<sub>0</sub>)<sup>−2</sup> describes vertical current spectra and ratios of potential energy to horizontal kinetic energy. The red wave number shape suppresses peaks in both these quantities at frequencies near N(z). A dip in the vertical current spectra at 0.5 cph not predicted by the model appears related to the bottom slope. Temperature fine structure is modeled as a passive vertical field advected by internal waves. Quasi‐permanent fine‐scale features of the stratification and vertically short internal waves are indistinguishable in this study. The model of McKean [1974] is generalized to include fine structure fields specified by their vertical wave number spectra. In addition to the trapped internal wave model, moored temperature spectra, temperature vertical difference spectra, and coherence over vertical separations are described by using a fine structure vertical wave number spectrum P<sub>T</sub>(k) A<sub>T</sub>k<sup>−5/2;</sup> which agrees with other spectra made by using vertical profiling instruments in the range 0.1–1.0 cpm. Horizontal current fine structure is also modeled as a passive field advected by vertically long internal waves. The model describes moored horizontal current spectra (least successfully at frequencies near N(z)) and finite difference vertical shear spectra. Contours of temperature in depth versus time indicate possible mixing events. These events appear concurrently with high shear and Richardson numbers 0.25 ≲ Ri ≲ 1.0. Over a 7‐m vertical separation a cutoff in Ri at 0.25 is observed, indicating possible saturation of the internal wave spectrum. Spectra of finite difference approximations to shear and buoyancy frequency are dominated by fine structure contributions over nearly the entire internal wave range, suggesting that breaking is enhanced by fine structure/Breaking appears equally likely at all frequencies in the internal wave range. |
Формат |
application.pdf |
Копирайт |
Copyright 1978 by the American Geophysical Union. |
Тема |
"Symposium on Oceanic Microstructures |
Тема |
OCEANOGRAPHY: GENERAL |
Тема |
Oceanography: Internal waves |
Название |
Measurements and models of fine structure, internal gravity waves, and wave breaking in the deep Ocean |
Тип |
article |
DOI |
10.1029/JC083iC06p02989 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Oceans |
Том |
83 |
Первая страница |
2989 |
Последняя страница |
3009 |
Выпуск |
C6 |
Библиографическая ссылка |
Abramowitz, M., I. A.Stegun, Handbook of Mathematical Functions, Appl. Math. Ser., 55, National Bureau of Standards, Washington, D. C., 1964. |
Библиографическая ссылка |
Bell, T. H., On the scattering of internal waves by deep ocean fine‐structure, J. Phys. Oceanogr., 32, 239–241, 1973. |
Библиографическая ссылка |
Briscoe, M. G., Gaussianity of internal waves, J. Geophys. Res., 8215, 2117–2126, 1977. |
Библиографическая ссылка |
Browning, K. A., Structure of the atmosphere in the vicinity of large‐amplitude Kelvin‐Helmholtz billows, Quart. J. Roy. Meteorol. Soc., 97, 283–299, 1971. |
Библиографическая ссылка |
Cacchione, D., C.Wunsch, Experimental study of internal waves over a slope, J. Fluid Mech., 66part 2, 223–239, 1974. |
Библиографическая ссылка |
Cairns, J. L., G. O.Williams, Internal wave observations from a midwater float, 2, J. Geophys. Res., 8112, 1943–1950, 1976. |
Библиографическая ссылка |
Dahlen, J., J.Shillingford, The microscale sensing array (MSA), J. Geophys. Res., 836, 1978. |
Библиографическая ссылка |
Desaubies, Y. J. F., Internal waves near the turning point, Geophys. Fluid Dyn., 5, 143–154, 1973. |
Библиографическая ссылка |
Eriksen, C. C., Measurements and models of fine‐structure, internal waves and wave breaking in the deep ocean, Ph.D. dissertation,Mass. Inst. of Technol.‐Woods Hole Oceanogr. Inst. Joint Program in Oceanogr.,Cambridge and Woods Hole, Mass.,1976. |
Библиографическая ссылка |
Fofonoff, N. P., Spectral characteristics of internal waves in the ocean, Deep Sea Res., 16, suppl, 59–71, 1969. |
Библиографическая ссылка |
Garrett, C., The effect of internal wave strain on vertical spectra of fine‐structure, J. Phys. Oceanogr., 3, 83–85, 1973. |
Библиографическая ссылка |
Garrett, C., W.Munk, Internal wave spectra in the presence of fine‐structure, J. Phys. Oceanogr., 1, 196–202, 1971. |
Библиографическая ссылка |
Garrett, C., W.Munk, Space‐time scales of internal waves, Geophys. Fluid Dyn., 2, 225–264, 1972a. |
Библиографическая ссылка |
Garrett, C., W.Munk, Oceanic mixing by breaking internal waves, Deep Sea Res., 19, 823–832, 1972b. |
Библиографическая ссылка |
Garrett, C., W.Munk, Space‐time scales of internal waves: A progress report, J. Geophys. Res., 803, 291–297, 1975. |
Библиографическая ссылка |
Gradshteyn, I. C., I. M.Ryzhik, Table of Integrals, Series, and Products, Academic, New York, 1965. |
Библиографическая ссылка |
Gregg, M. C., A comparison of finestructure spectra from the main thermocline, J. Phys. Oceanogr., 7, 33–40, 1977. |
Библиографическая ссылка |
Gröbner, W., N.Hofreiter, Integraltafel, 2, Springer, New York, 1966. |
Библиографическая ссылка |
Hayes, S. P., T. M.Joyce, R. C.MillardJr., Measurements of vertical fine structure in the Sargasso Sea, J. Geophys. Res., 803, 314–319, 1975. |
Библиографическая ссылка |
Hogg, N. G., Steady flow past an island with applications to Bermuda, Geophys. Fluid Dyn., 4, 55–81, 1972. |
Библиографическая ссылка |
Jenkins, G. M., D. G.Watts, Spectral Analysis and Its Applications, Holden‐Day, San Francisco, Calif., 1969. |
Библиографическая ссылка |
Joyce, T. M., Y. J. F.Desaubies, Discrimination between internal waves and finestructure, J. Phys. Oceanogr., 7, 22–32, 1976. |
Библиографическая ссылка |
McKean, R. S., Interpretation of internal wave measurements in the presence of fine‐structure, J. Phys. Oceanogr., 4, 200–213, 1974. |
Библиографическая ссылка |
Miles, J. W., L. N.Howard, Note on a heterogeneous shear flow, J. Fluid Mech., 20part 2, 331–336, 1964. |
Библиографическая ссылка |
Nayfeh, A. H., Perturbation Methods, John Wiley, New York, 1973. |
Библиографическая ссылка |
Orlanski, I., K.Bryan, Formation of the thermocline step structure by large‐amplitude internal gravity waves, J. Geophys. Res., 428, 6975–6983, 1969. |
Библиографическая ссылка |
Osborn, T. R., C. S.Cox, Oceanic fine structure, Geophys. Fluid Dyn., 3, 321–345, 1972. |
Библиографическая ссылка |
Phillips, O. M., The Dynamics of the Upper Ocean, Cambridge University Press, New York, 1966. |
Библиографическая ссылка |
Phillips, O. M., On spectra measured in an undulating layered medium, J. Phys. Oceanogr., 11, 1–6, 1971. |
Библиографическая ссылка |
Sanford, T. B., Observations of the vertical structure of internal waves, J. Geophys. Res., 8027, 3861–3871, 1975. |
Библиографическая ссылка |
Thorpe, S. A., Experiments on the instability of stratified shear flows: Miscible fluids, J. Fluid Mech., 46part 2, 299–310, 1970. |
Библиографическая ссылка |
Thorpe, S. A., Turbulence in stably stratified fluids: A review of laboratory experiments, Boundary Layer Meteorol., 5, 95–119, 1973. |
Библиографическая ссылка |
Turner, J. S., Buoyancy Effects in Fluids, Cambridge University Press, New York, 1973. |
Библиографическая ссылка |
Voorhis, A., Measurements of vertical motion and the partition of energy in the New England slope water, Deep Sea Res., 15, 599–608, 1968. |
Библиографическая ссылка |
Webster, T. F., Estimates of the coherence of ocean currents over vertical distances, Deep Sea Res., 19, 35–44, 1972. |
Библиографическая ссылка |
Woods, J. D., Wave‐induced shear instability in the summer thermocline, J. Fluid Mech., 32part 4, 791–800, 1968. |
Библиографическая ссылка |
Wunsch, C., Temperature microstructure on the Bermuda slope with application to the mean flow, Tellus, 244, 350–367, 1972. |
Библиографическая ссылка |
Wunsch, C., J.Dahlen, Preliminary results bf internal wave measurements in the main thermocline at Bermuda, J. Geophys. Res., 7530, 5899–5908, 1970. |