Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Mei, Chiang C.
Автор Liu, Ko‐Fei
Дата выпуска 1987
dc.description The dynamics of cohesive mud under wave action is important to the geological processes along some coastlines. Because of the complex rheological properties there have been vastly different models for predicting the effect of mud on wave attenuation. This paper focuses on a non‐Newtonian behavior of highly concentrated mud, whereby shearing strain occurs only if the shear stress exceeds a certain threshold called the yield stress. The wave‐induced motion in a thin mud layer beneath a clear water layer is studied. There are circumstances in which the yield stress is dominant and acts like a Coulomb friction. Mud motion can change from continuous to intermittent as the wave attenuates. The effects of the non‐Newtonian behavior on wave damping are compared to other more common causes of dissipation.
Формат application.pdf
Копирайт Copyright 1987 by the American Geophysical Union.
Тема MARINE GEOLOGY AND GEOPHYSICS
Тема Marine Geology and Geophysics: Sediment transport
Тема OCEANOGRAPHY: GENERAL
Тема Oceanography: General: Analytical modeling and laboratory experiments
Название A Bingham‐Plastic Model for a muddy seabed under long waves
Тип article
DOI 10.1029/JC092iC13p14581
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Oceans
Том 92
Первая страница 14581
Последняя страница 14594
Выпуск C13
Библиографическая ссылка Allersma, E., Mud in estuaries and along coastsInternational Symposium on River SedimentationChinese Society of Hydraul. Eng.BeijingMarch, 1980.
Библиографическая ссылка Bercovier, M., M.Engelman, A finite‐element method for incompressible non‐Newtonian flows, J. Comput. Phys., 36, 313–326, 1980.
Библиографическая ссылка Bird, R. B., G. C.Dai, B. J.Yarusso, The rheology and flow of viscoplastic materials, Rev. Chem. Eng., 1, 1–70, 1983.
Библиографическая ссылка Crochet, M. J., K.Walters, Numerical methods in non‐Newtonian fluid mechanics, Annu. Rev. Fluid Mech., 15, 241–260, 1983.
Библиографическая ссылка Crochet, M. J., A. R.Davies, K.Walters, Numerical Simulation of Non‐Newtonian Flow, 352, Elsevier, New York, 1984.
Библиографическая ссылка Dalrymple, R. A., P. L‐H.Liu, Waves over soft muds: A two‐layer fluid model, J. Phys. Oceanogr., 8, 1121–1131, 1978.
Библиографическая ссылка Forristall, G. Z., A. M.Reece, Measurements of wave attenuation due to a soft bottom. The SWAMP Experiment, J. Geophvs. Res., 90C2, 3367–3380, 1985.
Библиографическая ссылка Gade, H. G., Effects of a non‐rigid, impermeable bottom on plane surface waves in shallow water, J. Mar. Res., 16, 61–82, 1958.
Библиографическая ссылка Hanks, R. W., Motion generated by an oscillating plate contacting a Bingham body, AIChE J., 201, 173, 1974.
Библиографическая ссылка Krone, R. B., A study of rheologic properties of estuarial sedimentsSer. Rep. 63‐8.Hydraul. Eng. Lab. and Sanitary Res. Lab., Univ. of Calif., Berkeley, 1963.
Библиографическая ссылка Ly, D. P., D.Bellet, The study of time‐dependent pipe flows of inelastic non‐Newtonian fluids using a multiviscous approximation, J. Non‐Newtonian Fluid Mech., 1, 287–304, 1976.
Библиографическая ссылка McPherson, H., The attenuation of water waves over a non‐rigid bed, J. Non‐Newtonian Fluid Mech., 974, 721–742, 1980.
Библиографическая ссылка Makarov, A. M., V. G.Sal'nikov, Nonstationary shear flow of viscoplastic medium, Engl. Transl., J. Appl. Mech. Tech. Phys., 13, 546–550, 1972.
Библиографическая ссылка Makarov, A. M., L. A.Zhdanova, O. N.Polozova, Nonsteady‐state flow of a viscoplastic medium in a plane channel, J. Eng. Phys., 22, 51–55, 1974.
Библиографическая ссылка Migniot, P. C., Etude des Proprietes physiques de differents sediments tres fins et leur comportement sous des actions hydrodynamiques, Houille Blanche, 7, 591–620, 1968.
Библиографическая ссылка Miles, J. W., Solitary wave evolution over a gradual slope with turbulent friction, J. Phys. Oceanogr., 13, 551–553, 1983a.
Библиографическая ссылка Miles, J. W., Wave evolution over a gradual slope with turbulent friction, J. Fluid Mech., 133, 207–216, 1983b.
Библиографическая ссылка Nagai, T., T.Yamamoto, L.Figeroa, A laboratory experimentation of the effect of a clay bed on the water wave propogation, Cont. Shelf Res., 5, 521–542, 1986.
Библиографическая ссылка Odd, N. V. M., M. W.Owen, A two layer model of mud transport in the Thames estuary, Proc. Inst. Civ. Eng., suppl, 175–205, 1972.
Библиографическая ссылка Phan‐Thien, N., A similarity solution for a Rayleigh flow of a Bingham fluid, J. Appl. Mech., 501, 229–230, 1983.
Библиографическая ссылка Tubman, M. W., J. N.Suhayda, Wave action and bottom movements in fine sediments, Proceedings of the 15th Coastal Engineering Conference, , 2, 1168–1183, American Society of Civil Engineering, New York, 1976.
Библиографическая ссылка Wan, Z., Bed material movement in hyperconcentrated flow, Ser. Pap., 31, 79, Inst. of Hydrodyn. and Hydraul. Eng., Tech. Univ. of Denmark, Lyngby, 1982.
Библиографическая ссылка Wang, M., W.Duan, G.Tan, Y.Zhan, On the structure and movement mechanism of flow with hyper concentration of sedimentInternational Workshop on Flow at Hyperconcentrations of SedimentInternational Research and Training Center on Erosion and Sedimentation (IRTCES)BeijingSept., 1985.
Библиографическая ссылка Wells, J. T., Shallow‐water waves and fluid‐mud dynamics, Coast of Surinam, South AmericaTech. Rep. 257Coastal Stud. Inst., L. State Univ., Baton Rouge, 1978.
Библиографическая ссылка Wilkinson, W. L., Non‐Newtonian Fluids, Pergamon, New York, 1959.
Библиографическая ссылка Yamamoto, T., On the response of a Coulomb‐damped poroelastic bed to water waves, Mar. Geotechnol., 52, 93–130, 1983.

Скрыть метаданые