Автор |
Schultz, Howard |
Дата выпуска |
1990 |
dc.description |
A common problem associated with spaceborne scatterometry, including SASS, NSCAT and ERS‐1, is that retrieval algorithms often compute multiple wind vectors per retrieval cell. Only one wind vector per retrieval cell corresponds to the true solution while the others are aliases that arise from symmetries in the response of small scale surface waves to wind forcing. The NSCAT retrieval algorithm ranks each ambiguous wind vector within a retrieval cell according to the likelihood that the wind vector is the true solution. Although the most likely wind vectors are usually correct, in approximately 40% of the retrieval cells an alias is ranked first. Based on the mathematical properties of these likelihood assignment errors, an ambiguity removal algorithm is derived that utilizes a nonlinear circular median filter (CMF) to select the true solution in each retrieval cell. The CMF algorithm was tested by analyzing twelve simulated wind fields with an average likelihood assignment error rate of 389 per 1000 retrievals. After processing by the CMF algorithm, the error rate was significantly reduced to an average of only 36 per 1000. To better understand the performance of the CMF algorithm under operational conditions, the analysis was extended by adding spatially correlated likelihood assignment errors to one of the simulated wind fields. A re‐analysis of this wind field showed that the performance of the CMF algorithm may decrease significantly if the likelihood assignment errors are correlated over several retrieval cells. In addition to deriving an ambiguity removal algorithm, a wind field smoothing technique that utilizes a circular median filter is derived and tested on one of the resolved wind fields. The results showed that CMF smoothing technique increases the spatial coherency between the true and resolved wind fields. Based on these analyses, specific recommendations are made for monitoring the performance of the wind retrieval process and for improving the accuracy of the retrieved wind fields. |
Формат |
application.pdf |
Копирайт |
Copyright 1990 by the American Geophysical Union. |
Тема |
ATMOSPHERIC COMPOSITION AND STRUCTURE |
Тема |
Air/sea constituent fluxes |
Тема |
GEODESY AND GRAVITY |
Тема |
Satellite geodesy: technical issues |
Тема |
ATMOSPHERIC PROCESSES |
Тема |
Meteorology and Atmospheric Dynamics: Synoptic‐scale meteorology |
Тема |
Ocean/atmosphere interactions |
Тема |
OCEANOGRAPHY: PHYSICAL |
Тема |
Air/sea interactions |
Тема |
Instruments and techniques |
Тема |
RADIO SCIENCE |
Тема |
Remote sensing |
Тема |
Instruments and techniques |
Название |
A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data |
Тип |
article |
DOI |
10.1029/JC095iC04p05291 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Oceans |
Том |
95 |
Первая страница |
5291 |
Последняя страница |
5303 |
Выпуск |
C4 |
Библиографическая ссылка |
Anderson, D., A.Hollingsworth, S.Uppala, P.Woiceshyn, A study of the feasibility of using sea and wind information from the ERS‐1 satellite, 1, Wind scatterometer dataESRIN contract 6297/86/HGE‐I(SC), 121Eur. Cent. for Medium‐Range Forecasts, Berkshire, England, 1987. |
Библиографическая ссылка |
Baker, W. E., R.Atlas, E.Kalnay, M.Halem, P. M.Woiceshyn, S.Peteherych, D.Edelmann, Large‐scale analysis and forecast experiments with wind data from the Seasat A scatterometer, J. Geophys. Res., 89, 4927–4936, 1984. |
Библиографическая ссылка |
Chi, C. Y., F. K.Li, A comparative study of several wind estimation algorithms for spaceborne scatterometers, IEEE Trans. Geosci. Remote Sens., GE‐26, 115–121, 1988. |
Библиографическая ссылка |
Durden, S. L., J. F.Vesecky, A physical radar cross section model for a wind driven sea with swell, IEEE J. Oceanic Eng., OE‐10, 445–451, 1985. |
Библиографическая ссылка |
Freilich, M. H., D. B.Chelton, Wavenumber spectra of Pacific winds measured by the Seasat scatterometer, J. Phys. Oceanogr., 16, 741–757, 1986. |
Библиографическая ссылка |
Hoffman, R. N., SASS wind ambiguity removal by direct minimization, Mon. Weather Rev., 110, 2197–2206, 1982. |
Библиографическая ссылка |
Hoffman, R. N., SASS wind ambiguity removal by direct minimization, 2, Use of smoothness and dynamical constraints, Mon. Weather Rev., 112, 1829–1852, 1984. |
Библиографическая ссылка |
Jenkins, G. M., D. G.Watts, Spectral Analysis and Its Applications, 525, Holden‐Day, San Francisco, Calif., 1968. |
Библиографическая ссылка |
Jones, W. L., L. C.Schroeder, D. H.Boggs, M.Bracalente, R. A.Brown, G. J.Dome, J.Pierson, F. J.Wentz, The Seasat‐A satellite scatterometer: The geophysical evaluation of remotely sensed wind vectors over the ocean, J. Geophys. Res., 87, 3297–3217, 1982. |
Библиографическая ссылка |
Justusson, B. I., Median filtering: Statistical properties, Topics in Applied PhysicsT. S.Huang, 161–196, Springer‐Verlag, New York, 1981. |
Библиографическая ссылка |
Levy, G., R. A.Brown, A simple objective analysis scheme for scatterometer data, J. Geophys. Res., 91, 5153–5158, 1986. |
Библиографическая ссылка |
Li, F., G.Neumann, S.Shaffer, S. L.Durden, Studies of the location of azimuth modulation minima for Ku band ocean radar backscatter, J. Geophys. Res., 93, 8229–8238, 1988. |
Библиографическая ссылка |
Mardia, K. V., Statistics of Directional Data, 357, Academic Press, New York, 1972. |
Библиографическая ссылка |
Moore, R. K., F. T.Ulaby, The radar‐radiometer, Proc. IEEE, 574, 587–590, 1969. |
Библиографическая ссылка |
Offiler, D., ERS‐1 surface wind ambiguity removal by means of objective processing and subjective human interventionfinal rep. CR(P)2110, contract 6154/85/NL/BI, 43Eur. Space Agency, Berkshire, United Kingdom, 1985. |
Библиографическая ссылка |
Price, J. C., The nature of multiple solutions for surface wind speed over the oceans from scatterometer measurements, Remote Sens. Environ., 5, 47–54, 1976. |
Библиографическая ссылка |
Schroeder, L. C., D. H.Boggs, G.Dome, I. M.Halberstam, W. L.Janes, W. J.Pierson, F. J.Wentz, The relationship between wind vector and normalized radar cross section used to derive Seasat‐A satellite scatterometer winds, J. Geophys. Res., 87, 3318–3336, 1982. |
Библиографическая ссылка |
Schroeder, L. C., W. L.Grantham, E. M.Bracalente, C. L.Britt, K. S.Shanmugam, F. J.Wentz, D. P.Wylie, B. B.Hinton, A study of removal of wind direction results for a Ku‐band scatterometer wind sensor using measurements at three different azimuth angles, Proceedings of the 1983 International Geoscience Remote Sensing Symposium, 724–728IEEE, New York, 1983. |
Библиографическая ссылка |
Schultz, H., A median filter approach for correcting errors in a vector field,Proceedings of the 1985 International Geoscience and Remote Sensing Symposium, sect. FP‐3,6.1–6.10,IEEE,New York,1985. |
Библиографическая ссылка |
Weissman, D. E., T. W.Thompson, R.Legeckis, Modulation of sea surface radar cross section by surface stress: Wind speed and temperature effects across the gulf stream, J. Geophys. Res., 85, 5032–5042, 1980. |
Библиографическая ссылка |
Wurtele, M. G., P. M.Woiceshyn, S.Peteherych, M.Borowski, W. S.Appleby, Wind direction alias removal studies of SEASAT scatterometer‐derived wind fields, J. Geophys. Res., 87, 3365–3377, 1982. |