Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Keller, Mary Ruth
Автор Keller, William C.
Автор Plant, William J.
Дата выпуска 1992
dc.description Measurements of normalized radar cross sections of wind‐generated waves were made at X band for both vertical and horizontal polarization for incidence angles of 10°, 28°, 48°, and 68°. The study, conducted in the Naval Research Laboratory wind‐wave facility, sought to measure effects on the backscatter of varying water temperature, wind speed, and wind stress. The cross‐section measurements were averaged for 2.13 min simultaneously with wind speed and wind stress. Air and water temperature were measured periodically with mercury thermometers. The results were compared with the empirical model functions developed for the Seasat‐A satellite scatterometer, SASS I and SASS II, and with the physically based models of Burden and Vesecky, Plant, and Donelan and Pierson. In order to use the SASS I and SASS II models for these comparisons, differences between K<sub>u</sub> and X bands were assumed to be small; where possible, the other models were evaluated at X band. It was found that none of the models was consistently accurate at all wind speeds, incidence angles, and polarizations. Part of the inconsistency can be assigned to the fact that the models were developed for open ocean conditions with much higher sea states. However, Plant's model can easily be adjusted to account for this effect by using a relationship between mean squared slope and wind stress appropriate for tank conditions. When this was done, the model did fit the data better but the improvement was not dramatic. This indicates that inaccuracies in the models are probably due to other factors as well. When plotted versus 19.5‐m winds on a log‐log scale, the measured cross sections do not fall on straight lines. Thus a power law dependence of cross section on wind speed is not a good representation of that relationship over our whole wind speed range. The data exhibit large variations at low wind speeds, however, which are not related to system noise. This may indicate that the statistics of backscatter depend markedly on wind speed. When these low wind speed data were omitted, a power law was found to fit the remaining data rather well. Although the water temperature was varied from 9°C to 36°C when the measurements were made at a 48° incidence angle, no temperature dependence was detectable above the low‐wind‐speed variability. The wave tank data compare well enough with 10 GHz, 3.0 cm (X band) aircraft measurements, and with the 14.6 GHz, 2.1 cm (K<sub>u</sub> band) satellite data used in the SASS II model to cast doubt on the hypothesis that cross section depends on antenna altitude.
Формат application.pdf
Копирайт This paper is not subject to U.S. copyright. Published in 1992 by the American Geophysical Union.
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Air/sea constituent fluxes
Тема ELECTROMAGNETICS
Тема Scattering and diffraction
Тема Wave propagation
Тема GEODESY AND GRAVITY
Тема Ocean monitoring with geodetic techniques
Тема IONOSPHERE
Тема Wave propagation
Тема MATHEMATICAL GEOPHYSICS
Тема Wave propagation
Тема ATMOSPHERIC PROCESSES
Тема Ocean/atmosphere interactions
Тема NONLINEAR GEOPHYSICS
Тема Nonlinear waves, shock waves, solitons
Тема OCEANOGRAPHY: GENERAL
Тема Remote sensing and electromagnetic processes
Тема OCEANOGRAPHY: PHYSICAL
Тема Air/sea interactions
Тема RADIO SCIENCE
Тема Radio oceanography
Тема Ionospheric propagation
Название A wave tank study of the dependence of X band cross sections on wind speed and water temperature
Тип article
DOI 10.1029/91JC03000
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Oceans
Том 97
Первая страница 5771
Последняя страница 5792
Выпуск C4
Библиографическая ссылка Barrick, D. E., Wind dependence of quasispecular microwave sea scatter, IEEE Trans. Antennas Propag., AP‐22, 135–136, 1974.
Библиографическая ссылка Bass, F. G., I. M.Fuks, A. I.Kalmykov, I. E.Ostrovsky, A. D.Rosenberg, Very high frequency radiowave scattering by a disturbed sea surface, 1, Scattering from a slightly disturbed boundary, IEEE Trans. Antenna Propag., AP‐16, 554–559, 1968a.
Библиографическая ссылка Bass, F. G., I. M.Fuks, A. I.Kalmykov, I. E.Ostrovsky, A. D.Rosenberg, Very high frequency radiowave scattering by a disturbed sea surface, 2, Scattering from an actual sea surface, IEEE Trans. Antenna Propag., AP‐16, 560–568, 1968b.
Библиографическая ссылка Blanc, T. V., W. J.Plant, W. C.Keller, The Naval Research Laboratory's air‐sea interaction blimp experiment, Bull. Am. Meteorol. Soc., 70, 354–365, 1989.
Библиографическая ссылка Cox, C. S., W. H.Munk, Statistics of the sea surface derived from sun glitter, J. Mar. Res., 13, 198–227, 1954.
Библиографическая ссылка Daley, J. C., An empirical sea clutter modelNRL Rep. 2668, 1–34Nav. Res. Lab., Washington, D.C., 1973.
Библиографическая ссылка DeLoor, G. P., P.Hoogeboom, A discrepancy between ground based and airborne radar backscatter measurements, IEEE Trans. Geosci. Remote Sens., GE‐20, 134–136, 1982.
Библиографическая ссылка Donelan, M. A., W. J.Pierson, A two‐scale Bragg scattering model for microwave backscatter from wind generated waves, Eur. Space Agency Spec. Publ., ESA, SP‐254, 297–302, 1986.
Библиографическая ссылка Donelan, M. A., W. J.Pierson, Radar scattering and equilibrium ranges in wind‐generated waves with application to scatterometry, J. Geophys. Res., 92, 4971–5029, 1987.
Библиографическая ссылка Donelan, M. A., J.Hamilton, W. H.Hut, Directional spectra of wind generated waves, Philos. Trans. R. Soc. London, Ser. A, 315, 509–562, 1985.
Библиографическая ссылка Duncan, J. R., W. C.Keller, J. W.Wright, Fetch and wind speed dependence of Doppler spectra, Radio Sci., 809–814, 1974.
Библиографическая ссылка Durden, S. L., J. F.Vesecky, A physical radar cross section model for a wind‐driven sea with swell, IEEE J. Oceanic Eng., OE‐10, 451–454, 1985.
Библиографическая ссылка Feindt, F., V.Wismann, W.Alpers, W. C.Keller, Airborne measurements of the ocean radar cross section at 5.3 GHz as a function of wind speed, Radio Sci., 21, 845–856, 1986.
Библиографическая ссылка Fung, A. K., K. K.Lee, A semi‐empirical sea spectrum model for scattering coefficient estimation, IEEE J. Oceanic Eng., OE‐7, 166–176, 1982.
Библиографическая ссылка Geernaert, G. L., Measurements of the angle between the wind vector and the wind stress vector in the surface layer over the North Sea, J. Geophys. Res., 93, 8215–8220, 1988.
Библиографическая ссылка Guinard, N. W., J. C.Daley, An experimental study of a sea clutter model, Proc. IEEE, 58, 543–550, 1970.
Библиографическая ссылка Guinard, N. W., J. T.Ransone, J. C.Daley, Variation of the NRCS of the sea with increasing roughness, J. Geophys. Res., 76, 1525–1538, 1971.
Библиографическая ссылка Hsu, C. T., E. Y.Hsu, R. L.Street, On the structure of turbulent flow over a progressive water wave: Theory and experiment in a transformed, wave‐following coordinate system, J. Fluid Mech., 105, 87–117, 1981.
Библиографическая ссылка Hünerfuss, J., W.Alpers, W. L.Jones, Measurements at 13.9 GHz of the radar backscattering cross section of the North Sea covered with an artificial surface film, Radio Sci., 13, 979–983, 1978.
Библиографическая ссылка Jones, W. L., L. C.Schroeder, J. L.Mitchell, Aircraft measurements of the microwave scattering signature of the ocean, IEEE J. Oceanic Eng., OE‐2, 52–61, 1977.
Библиографическая ссылка Jones, W. L., F. J.Wentz, L. C.Schroeder, Algorithm for inferring wind stress from Seasat A, J. Spacecr. Rockets, 15, 368–374, 1978.
Библиографическая ссылка Kahma, K. K., M. A.Donelan, A laboratory study of the minimum wind speed for wave generation, J. Fluid Mech., 192, 339–364, 1988.
Библиографическая ссылка Kawai, S., Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves, J. Fluid Mech., 93, 661–703, 1979.
Библиографическая ссылка Keller, W. C., W. J.Plant, Cross sections and modulation transfer functions at L and K<sub>u</sub> bands measured during the Tower Ocean Wave and Radar Dependence experiment, J. Geophys. Res., 95, 16277–16289, 1990.
Библиографическая ссылка Keller, W. C., J. W.Wright, Microwave scattering and straining of wind‐generated waves, Radio Sci., 10, 139–147, 1975.
Библиографическая ссылка Keller, W. C., J. W.Wright, Modulation of microwave backscatter by gravity waves in a wave tankNRL Rep., 7968, 1–21Nav. Res. Lab., Washington D.C., 1976.
Библиографическая ссылка Keller, W. C., T. R.Larson, J. W.Wright, Mean wind speeds of wind waves at short fetch, Radio Sci., 9, 1091–1100, 1974.
Библиографическая ссылка Keller, W. C., W. J.Plant, D. E.Weissman, The dependence of X band microwave sea return on atmospheric stability and sea state, J. Geophys. Res., 90, 1019–1029, 1985.
Библиографическая ссылка Keller, W. C., V.Wismann, W.Alpers, Tower‐based measurements of the ocean C band radar backscattering cross section, J. Geophys. Res., 94, 924–930, 1989.
Библиографическая ссылка Lamb, H., Hydrodynamics,6th ed., 738 pp.,Cambridge University Press,New York,1932. (Reprinted byDover,New York,1945.).
Библиографическая ссылка Large, W. G., S.Pond, Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11, 324–336, 1981.
Библиографическая ссылка Larson, T. R., J. W.Wright, Wind wave studies, 2, The parabolic antenna as a wave probeNRL Rep., 7850, 1–16Nav. Res. Lab., Washington, D.C., 1974.
Библиографическая ссылка Larson, T. R., J. W.Wright, Wind‐generated gravity capillary waves: Laboratory measurements of temporal growth rates using microwave backscatter, J. Fluid Mech., 70, 417–436, 1975.
Библиографическая ссылка Masuko, H., K.Okamoto, M.Shimada, S.Niwa, Measurement of microwave backscattering signatures of the ocean surface using X band and K<sub>a</sub> band airborne scatterometers, J. Geophys. Res., 91, 13065–13083, 1986.
Библиографическая ссылка McGoldrick, L. F., O. M.Phillips, N.Huang, T.Hodgson, Measurements on resonant wave interactions, J. Fluid Mech., 25, 437–456, 1966.
Библиографическая ссылка Melville, W. K., M. R.Loewen, F. C.Felizardo, A. T.Jessup, M. J.Buckingham, Acoustic and microwave signatures of breaking waves, Nature, 3363, 54–56, 1988.
Библиографическая ссылка Mitsuyasu, H., Interactions between water waves and wind, I, Rep. Res. Inst. Appl. Mech. Kyushu Univ., 14, 67–88, 1966.
Библиографическая ссылка Phillips, O. M., Radar returns from the sea surface ‐ Bragg scattering and breaking waves, J. Phys. Oceanogr., 18, 1065–1074, 1988.
Библиографическая ссылка Phillips, O. M., M. L.Banner, Wave breaking in the presence of wind drift and swell, J. Fluid Mech., 66, 625–640, 1974.
Библиографическая ссылка Pierson, W. J., L.Moskowitz, A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitiagorodski, J. Geophys. Res., 69, 5181–5190, 1964.
Библиографическая ссылка Plant, W. J., On the steady‐state energy balance of short gravity wave systems, J. Phys. Oceanogr., 10, 1340–1352, 1980.
Библиографическая ссылка Plant, W. J., A relationship between wind stress and wave slope, J. Geophys. Res., 87, 1961–1967, 1982.
Библиографическая ссылка Plant, W. J., A two‐scale model of short wind‐generated waves and scatterometry,J. Geophys. Res.,91,10,735–10,749,1986. (.
Библиографическая ссылка Plant, W. J., Correction,J. Geophys. Res.,93,1347,1988.).
Библиографическая ссылка Plant, W. J., J. W.Wright, Growth and equilibrium of short gravity waves in a wind‐wave tank, J. Fluid Mech., 82, 767–793, 1977.
Библиографическая ссылка Ramberg, S. E., The effects of yaw and finite length upon the vortex length of stationary and vibrating circular cylinders, J. Fluid Mech., 128, 81–107, 1983.
Библиографическая ссылка Schroeder, L. C., D. H.Boggs, G.Dome, I. M.Halberstam, W. L.Jones, W. J.Pierson, F. J.Wentz, The relationship between the wind vector and the normalized radar cross section used to derive Seasat‐A satellite scatterometer winds, J. Geophys. Res., 87, 3318–3336, 1982.
Библиографическая ссылка Schroeder, L. C., W. L.Jones, P. R.Schaffner, J. L.Mitchell, AAFE radscat 13.9 GHz measurements and analysis: Wind speed signature of the ocean, IEEE J. Oceanic Eng., OE‐10, 346–357, 1985.
Библиографическая ссылка , Radar HandbookM. I.Skolnik, 1524, McGraw‐Hill, New York, 1970.
Библиографическая ссылка Tang, S., O. H.Shemdin, Measurements of high‐frequency waves using a wave follower, J. Geophys. Res., 88, 9832–9840, 1983.
Библиографическая ссылка Valenzuela, G. R., The growth of gravity‐capillary waves in a coupled‐shear flow, J. Fluid Mech., 76, 229–250, 1976.
Библиографическая ссылка Valenzuela, G. R., Theories for the interaction of electromagnetic and ocean waves‐ A review, Boundary Layer Meteorol., 13, 61–85, 1978.
Библиографическая ссылка Weissman, D. E., Dependence of the microwave radar cross section on ocean surface variables: Comparison of measurements and theory using data from the Frontal Air‐Sea Interaction Experiment, J. Geophys. Res., 95C3, 3387–3398, 1990.
Библиографическая ссылка Wentz, F. J., S.Peteherych, L. A.Thomas, A model function for ocean radar cross sections at 14.6 GHz, J. Geophys. Res., 89, 3689–3704, 1984.
Библиографическая ссылка Witting, J. M., J. W.Wright, Microwave scattering and the dynamics of short wind waves, Rep. NRL Prog., 1–16, 1975.
Библиографическая ссылка Wright, J. W., Backscattering from capillary waves with application to sea clutter, IEEE Trans. Antennas Propag., AP‐14, 749–754, 1966.
Библиографическая ссылка Wright, J. W., A new model for sea clutter, IEEE Trans. Antennas Propag., AP‐16, 217–223, 1968.
Библиографическая ссылка Wright, J. W., W. C.Keller, Doppler spectra in microwave scattering from wind waves, Phys. Fluids, 141, 466–474, 1971.
Библиографическая ссылка Wu, J., Effects of pulsating wind on velocity profiles and microstructures, J. Phys. Oceanogr., 5, 782–789, 1975a.
Библиографическая ссылка Wu, J., Wind‐induced drift currents, J. Fluid Mech., 68, 49–70, 1975b.
Библиографическая ссылка Wu, J., Correlation of micro‐ and macroscopic structure of wind wavesOceans '75 ConferenceInst. of Elect. and Electron. Eng.San Diego, CA., 1975c.

Скрыть метаданые