Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Nisbet, John S.
Автор Kasha, John R.
Автор Forbes, Gregory S.
Дата выпуска 1990
dc.description In Part 1 of this paper, the data obtained at the time of the Thunderstorm Research International Project storm at the Kennedy Space Center on July 11, 1978, are discussed and analyzed in a model‐independent manner. Here the parameters of the electrical system that would be consistent with these observations are discussed. Three‐dimensional electrodynamic modeling of the thundercloud electrification allowed estimates to be made of the current moments and electrical power generated continuously throughout the evolution of the two cells of the storm that were studied. The evolution and configuration of the currents were consistent with the separation of an originally neutral ensemble of particles by gravity in the region of 7 km in the region close to the maximum of the updraft velocity. After about 370 s the effect of wind shears would have caused the particles to separate in the convective system of the cells. Rain did not appear to be the dominant charge carrier. The current moments generated were compared with the current moments transferred by intercloud and cloud‐to‐ground lightning. It is shown that for the southern cell, which produced a charge moment of about 8.4 (MC m), lightning utilized about 84% of the charge moment separated, while for the northern cell, which produced about 1.1 (MC m), this figure was approximately 60%. It was shown that the times of initiation and maximum electrical power generated corresponded best with the normalized mass above 7.5 km. It was deduced that the median diameter heavier particles had a fall velocity of about 3 m s<sup>−1</sup>. The generator currents, flash rates, cloud conductivities, and mean charge per flash were used to estimate the volume associated with the lower region of current divergence.
Формат application.pdf
Копирайт Copyright 1990 by the American Geophysical Union.
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Cloud physics and chemistry
Тема ATMOSPHERIC PROCESSES
Тема Meteorology and Atmospheric Dynamics: Atmospheric electricity
Тема Meteorology and Atmospheric Dynamics: Lightning
Название A case study of the Thunderstorm Research International Project storm of July 11, 1978 2. Interrelations among the observable parameters controlling electrification
Тип article
DOI 10.1029/JD095iD05p05435
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Atmospheres
Том 95
Первая страница 5435
Последняя страница 5445
Выпуск D5
Библиографическая ссылка Atlas, D., C. W.Ulbrich, The use of attenuation and reflectivity for improved measurements of water content and rainfall, Colloquium on the Fine Scale Structure of Precipitation and Electromagnetic Wave Propagation, , II, Pap. III, 1, Centre d'Etudes des Telecommunications, Nice, France, 1973.
Библиографическая ссылка Bartnoff, S., D.Atlas, Microwave determination of particle‐size distribution, J. Meteorol., 8, 130–131, 1951.
Библиографическая ссылка Hager, W. W., J. S.Nisbet, J. R.Kasha, The evolution and discharge of electric fields within a thunderstorm, J. Comput. Phys., 82, 193–217, 1989a.
Библиографическая ссылка Hager, W. W., J. S.Nisbet, J. R.Kasha, W.‐C.Shann, Simulations of electric fields within a thunderstorm, J. Atmos. Sci., 46, 3542–3558, 1989b.
Библиографическая ссылка Jayaratne, E. R., C. P. R.Saunders, J.Hallett, Laboratory studies of charging of soft hail during ice crystal interactions, Q. J. R. Meteorol. Soc., 109, 609–630, 1983.
Библиографическая ссылка Keith, W. D., C. P. R.Saunders, Charge transfer during multiple large ice‐crystal interactions with a riming target, J. Geophys. Res., 94, 13103–13106, 1989.
Библиографическая ссылка Marshall, J. A., W. M. K.Palmer, The distribution of raindrops with size, J. Meteorol., 5, 165–166, 1948.
Библиографическая ссылка Moore, C. B., An assessment of thunderstorm electrification mechanisms, Electrical Processes in AtmospheresH.Dolezak, 333–352, Steinkopff, Darmstadt, 1977.
Библиографическая ссылка Nisbet, J. S., A dynamic model of thundercloud electric fields, J. Atmos. Sci., 40, 2855–2873, 1983.
Библиографическая ссылка Nisbet, J. S., Thundercloud current determination from measurements at the Earth's surface, J. Geophys. Res., 90, 5840–5856, 1985a.
Библиографическая ссылка Nisbet, J. S., Currents to the ionosphere from thunderstorm generators: A model study, J. Geophys. Res., 90, 9831–9844, 1985b.
Библиографическая ссылка Nisbet, J. S., General equations for the motions of ice crystals and water drops in gravitational and electric fields, Ann. Geophys., 7, 11–29, 1989.
Библиографическая ссылка Nisbet, J. S., T. A.Barnard, G. S.Forbes, E. P.Krider, R.Lhermitte, andC. L.Lennon, A case study of the Thunderstorm Research International Project storm of July 11, 1978, 1, Analysis of the data base, 95(D5), 1990.
Библиографическая ссылка Piepgrass, M. V., E. P.Krider, Lightning and surface rainfall during Florida thunderstorms, J. Geophys. Res., 87, 11193–11201, 1982.
Библиографическая ссылка Simpson, G. C., F. J.Scase, The distribution of electricity in thunderclouds, Proc. R. Soc. London, Ser. A, 161, 309–352, 1937.
Библиографическая ссылка Ulbrich, C. W., Natural variations in the analytical form of the raindrop size distribution, J. Appl. Meteorol., 22, 1764–1775, 1983.
Библиографическая ссылка Williams, E. R., The tripole structure of thunderstorms, J. Geophys. Res., 94, 13151–13167, 1989.

Скрыть метаданые