Автор |
Lubin, Dan |
Автор |
Mitchell, B. Greg |
Автор |
Frederick, John E. |
Автор |
Alberts, Amy D. |
Автор |
Booth, C. R. |
Автор |
Lucas, Timothy |
Автор |
Neuschuler, David |
Дата выпуска |
1992 |
dc.description |
Measurements of biologically active UV radiation made by the National Science Foundation (NSF) scanning spectroradiometer (UV‐monitor) at Palmer Station, Antarctica, during the Austral springs of 1988, 1989, and 1990 are presented and compared. Column ozone abundance above Palmer Station is computed from these measurements using a multiple wavelength algorithm. Two contrasting action spectra (biological weighting functions) are used to estimate the biologically relevant dose from the spectral measurements: a standard weighting function for damage to DNA, and a new action spectrum representing the potential for photosynthesis inhibition in Antarctic phytoplankton. The former weights only UV‐B wavelengths (280–320 nm) and gives the most weight to wavelengths shorter than 300 nm, while the latter includes large contributions out to 355 nm. The latter is the result of recent Antarctic field work and is relevant in that phytoplankton constitute the base of the Antarctic food web. The modest ozone hole of 1988, in which the ozone abundance above Palmer Station never fell below 200 Dobson units (DU), brought about summerlike doses of DNA‐effective UV radiation 2 months early, but UV doses which could inhibit photosynthesis in phytoplankton did not exceed a clear‐sky “maximum normal” dose for that time of year. The severe ozone holes of 1989 and 1990, in which the ozone abundance regularly fell below 200 DU, brought about increases in UV surface irradiance weighted by either action spectrum. Ozone abundances and dose‐weighted irradiances provided by the NSF UV‐monitor are used to derive the radiation amplification factors (RAFs) for both DNA‐effective irradiance and phytoplankton‐effective irradiance. The RAF for DNA‐effective irradiance is nonlinear in ozone abundance and is in excess of the popular “two for one” rule, while the RAF for phytoplankton‐effective irradiance approximately follows a “one for one” rule. |
Формат |
application.pdf |
Копирайт |
Copyright 1992 by the American Geophysical Union. |
Тема |
Polar Ozone |
Тема |
ATMOSPHERIC COMPOSITION AND STRUCTURE |
Тема |
Biosphere/atmosphere interactions |
Тема |
Radiation: transmission and scattering |
Тема |
BIOGEOSCIENCES |
Тема |
Biosphere/atmosphere interactions |
Тема |
Ecosystems, structure and dynamics |
Тема |
GLOBAL CHANGE |
Тема |
Atmosphere |
Тема |
OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL |
Тема |
Ecosystems, structure, dynamics, and modeling |
Тема |
GEOGRAPHIC LOCATION |
Тема |
Information Related to Geographic Region: Antarctica |
Название |
A contribution toward understanding the biospherical significance of Antarctic ozone depletion |
Тип |
article |
DOI |
10.1029/91JD01400 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Atmospheres |
Том |
97 |
Первая страница |
7817 |
Последняя страница |
7828 |
Выпуск |
D8 |
Библиографическая ссылка |
, Key Environments—AntarcticaW. N.Bonner, D. W. H.Walton, 381, Pergamon, New York, 1985. |
Библиографическая ссылка |
Caldwell, M. M., L. B.Camp, C. W.Warner, S. D.Flint, Action spectra and their key role in assessing biological consequences of solar UV‐B radiation change, Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant LifeR. C.Worrest, M. M.Caldwell, 87–111, Springer‐Verlag, Berlin, 1986. |
Библиографическая ссылка |
Cota, G. F., S. T.Kottmeir, D. H.Robinson, W. O.SmithJr., C. W.Sullivan, Bacterioplankton in the marginal ice zone of the Weddel Sea: Biomass, production and metabolic activity during austral autumn, Deep Sea Res., 37, 1145–1167, 1990. |
Библиографическая ссылка |
Deshler, T., D. J.Hofmann, J. V.Hereford, C. B.Sutter, Ozone and temperature profiles over McMurdo Station, Antarctica, in the spring of 1989, Geophys. Res. Lett., 17, 151–154, 1990. |
Библиографическая ссылка |
El Sayed, S. Z., Plankton of the Antarctic seas, Key Environments—AntarcticaW. N.Bonner, D. W. H.Walton, 135–153, Pergamon, New York, 1985. |
Библиографическая ссылка |
El Sayed, S. Z., Productivity of the Southern Ocean: A closer look, Comp. Biochem. Physiol., 90B, 489–498, 1988. |
Библиографическая ссылка |
Farman, J. C., B. G.Gardiner, J. D.Shanklin, Large losses of total ozone over Antarctica reveal seasonal ClO(x)/NO(x) interaction, Nature, 315, 207–210, 1985. |
Библиографическая ссылка |
Friedberg, E. C., DNA Repair, 614, W. H. Freeman, New York, 1985. |
Библиографическая ссылка |
Goody, R. M., Y. L.Yung, Atmospheric Radiation: Theoretical Basis, 519, Oxford University Press, New York, 1989. |
Библиографическая ссылка |
Hanawalt, P. C., and R. B.Setlow, Molecular Mechanisms for Repair of DNA, Basic Life Sci., 5, Parts A and B, pp., 418, Plenum, New York, 1975. |
Библиографическая ссылка |
Heywood, R. B., T. M.Whitaker, The marine flora, Antarctic EcologyR. M.Laws, 373–419, Academic, San Diego, Calif., 1984. |
Библиографическая ссылка |
Holm‐Hansen, O., M.Vernet, RACER: Phytoplankton distribution and rates of primary production during the Austral spring bloom, Antarct. J. U.S., 25, 135–136, 1990. |
Библиографическая ссылка |
Holm‐Hansen, O., S. Z.El Sayed, G. A.Franceschini, R.Cuhel, Primary production and the factors controlling phytoplankton growth in the Antarctic seas, Adaptation within Antarctic EcosystemsG. A.Llano, 11–50, Smithsonian Institution, Washington, D. C., 1977. |
Библиографическая ссылка |
Jones, L. W., B.Kok, Photoinhibition of chloroplast reactions, I, Kinetics and action spectra, Plant Physiol., 41, 1037–1043, 1966. |
Библиографическая ссылка |
Joseph, J. H., W. J.Wiscombe, J. A.Weinmann, The Delta‐Eddington approximation for radiative flux transfer, J. Atmos. Sci., 33, 2452–2459, 1976. |
Библиографическая ссылка |
Karentz, D., DNA repair mechanisms in Antarctic marine organisms, Antarct. J. U.S., 23, 114–115, 1988. |
Библиографическая ссылка |
Karentz, D., Ecological considerations of the Antarctic ozone hole, Antarct. Sci., 31, 3–11, 1991. |
Библиографическая ссылка |
Karl, D. M., O.Holm‐Hansen, G. T.Taylor, G.Tien, D. F.Bird, Microbial biomass and production in the western Bransfield Strait, Antarctica, during 1985–1986 austral summer, Deep Sea Res., 38, 1029–1055, 1991. |
Библиографическая ссылка |
Lubin, D., The ultraviolet radiation environment of the Antarctic peninsula, 134 pp., Ph.D. thesis,University of Chicago,Chicago, Ill.,1989. |
Библиографическая ссылка |
Lubin, D., J. E.Frederick, Column ozone measurements from Palmer Station, Antarctica: Variations during the Austral springs of 1988 and 1989, J. Geophys. Res., 95, 13883–13889, 1990. |
Библиографическая ссылка |
Lubin, D., J. E.Frederick, The ultraviolet radiation environment of the Antarctic Peninsula: The roles of ozone and cloud cover, J. Appl. Meteorol., 30, 478–493, 1991. |
Библиографическая ссылка |
Lubin, D., J. E.Frederick, C. R.Booth, T.Lucas, D.Neuschuler, Measurements of enhanced springtime ultraviolet radiation at Palmer Station, Antarctica, Geophys. Res. Lett., 16, 783–785, 1989a. |
Библиографическая ссылка |
Lubin, D., J. E.Frederick, A. J.Krueger, The ultraviolet radiation environment of Antarctica: McMurdo Station during September‐October 1987, J. Geophys. Res., 94, 8491–8496, 1989b. |
Библиографическая ссылка |
Mitchell, B. G., Action spectra of ultraviolet photoinhibition of Antarctic phytoplankton and a model of spectral diffuse attenuation coefficients, Response of Marine Phytoplankton to Natural Variations in UV‐B FluxG.Mitchell, I.Sobolev, O.Holm‐Hansen, Chemical Manufacturers Association, Washington, D. C., 1990. |
Библиографическая ссылка |
Mitchell, D. L., D.Karentz, Molecular and biological responses of Antarctic phytoplankton to ultraviolet radiation, Antarct. J. U.S., 26, 119–120, 1991. |
Библиографическая ссылка |
Molina, L. T., M. J.Molina, Absolute absorption cross sections of ozone in the 185‐ to 350‐nm wavelength range, J. Geophys. Res., 91, 14501–14508, 1986. |
Библиографическая ссылка |
Rundel, R. D., Action spectra and estimation of biologically effective UV radiation, Physiol. Plant., 58, 360–366, 1983. |
Библиографическая ссылка |
Sakshaug, E., The physiological ecology of polar phytoplankton, Proceedings of the Sixth Conference of the Comite Arctique InternationalL.Rey, V.Alexander, 61–89E. J. Brill, Leiden, Netherlands, 1989. |
Библиографическая ссылка |
Schoeberl, M. R., R. S.Stolarski, A. J.Krueger, The 1988 Antarctic ozone depletion: Comparison with previous year depletions, Geophys. Res. Lett., 16, 377–380, 1989. |
Библиографическая ссылка |
Scotto, J., G.Cotton, F.Urbach, D.Berger, T.Fears, Biologically effective ultraviolet radiation: Surface measurements in the United States, 1974 to 1985, Science, 239, 762–764, 1988. |
Библиографическая ссылка |
Setlow, R. B., The wavelengths in sunlight effective in producing skin cancer: A theoretical analysis, Proc. Natl. Acad. Sci. USA, 71, 3363–3366, 1974. |
Библиографическая ссылка |
Smith, R. C., Ozone, middle ultraviolet radiation, and the aquatic environment, Photochem. Photobiol., 50, 459–468, 1989. |
Библиографическая ссылка |
Smith, R. C., K. S.Baker, Stratospheric ozone, middle ultraviolet radiation and <sup>14</sup>C measurements of marine productivity, Science, 208, 592–593, 1980. |
Библиографическая ссылка |
Solomon, S., The mystery of the Antarctic ozone “hole”, Rev. Geophys., 26, 131–148, 1988. |
Библиографическая ссылка |
Stamnes, K., K.Henriksen, P.Ostensen, Simultaneous measurement of UV radiation received by the biosphere and the total ozone amount, Geophys. Res. Lett., 15, 784–787, 1988a. |
Библиографическая ссылка |
Stamnes, K., S.‐C.Tsay, W. J.Wiscombe, K.Jayaweera, Numerically stable algorithm for discrete‐ordinate‐method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 2502–2509, 1988b. |
Библиографическая ссылка |
Stamnes, K., J.Slusser, M.Bowen, Biologically effective ultraviolet radiation, total ozone abundance, and cloud optical depth at McMurdo Station, Antarctica, September 15, 1988 through April 15, 1989, Geophys. Res. Lett., 17, 2181–2184, 1990. |
Библиографическая ссылка |
Stolarski, R. S., A. J.Krueger, M. R.Schoeberl, R. D.McPeters, P. A.Newman, J. C.Alpert, Nimbus 7 satellite measurements of the springtime Antarctic ozone decrease, Nature, 322, 808–811, 1985. |
Библиографическая ссылка |
Stolarski, R. S., M. R.Schoeberl, P. A.Newman, R. D.McPeters, A. J.Krueger, The 1989 Antarctic ozone hole as observed by TOMS, Geophys. Res. Lett., 17, 1267–1270, 1990. |
Библиографическая ссылка |
Turco, R., A.Plumb, E.Condon, The Airborne Arctic Stratospheric Expedition: Prologue, Geophys. Res. Lett., 17, 313–316, 1990. |
Библиографическая ссылка |
Warren, S. G., C. J.Hahn, J.London, R. M.Chervin, R. L.Jenne, Global distribution of total cloud cover and cloud type amounts over landNCAR Tech. Note, DOE/ER/60085‐Hl, NCAR/TN‐273+STRNatl. Cent. for Atmos. Res., Boulder, Colo., 1986. |
Библиографическая ссылка |
, World Meteorological Organization,Atmospheric Ozone 1985: Assessment of our understanding of the processes controlling its present distribution and change,Rep. 16,chap. 7, pp.349–392,Global Research and Monitoring Project,Geneva,1986. |