Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Marinucci, M. R.
Автор Giorgi, F.
Дата выпуска 1992
dc.description In this and the companion paper by Giorgi et al. (this issue) we present a regional climate change scenario for Europe and the western Mediterranean basin induced by doubling of carbon dioxide concentration as produced with a limited area model (LAM) nested in a general circulation model (GCM). In this paper we analyze the seasonal climatology of the present‐day climate simulation which is used as a control run in the generation of the scenario. The GCM and the LAM employed for this study are versions of the community climate model (CCM) of the National Center for Atmospheric Research (NCAR) and the NCAR/Pennsylvania State University mesoscale model (MM4). The CCM simulation generally reproduces the basic seasonal migration patterns of the storm tracks which affect the European region but also shows significant biases: (1) a general weakening and southward shift of the cold season North Atlantic jet; (2) cold sea surface temperature bias of up to 4°–6°C in the North Atlantic and the Mediterranean; (3) cold tropospheric temperature bias of several degrees; (4) low tropospheric relative humidity bias; and (5) underprediction of July precipitation, resulting in low soil moisture conditions and exceedingly high surface temperatures. Overall, the nested MM4 produces large‐scale circulations similar to those of the driving CCM and, because of its finer representation of topography and coastlines, substantially improves the spatial distribution of precipitation and surface air temperature not only at high resolution but also at resolutions close to the CCM's. Among the main biases in the nested MM4 simulation are (1) cold bias over land of 1°–5°C in January, April, and October and warm bias in July; (2) underprediction of precipitation over most of continental Europe, maximum in July (simulated precipitation is 60–80% lower than observed) and less pronounced in January, April, and October (simulated precipitation is 10–40% lower than observed). A strong contribution to these biases is given by errors in the driving CCM tropospheric fields. Overall, temperature and precipitation are better simulated in the colder seasons than in summertime and the seasonal cycle is captured better over the Mediterranean regions than over the continental interior.
Формат application.pdf
Копирайт Copyright 1992 by the American Geophysical Union.
Тема GEODESY AND GRAVITY
Тема Mass balance
Тема GLOBAL CHANGE
Тема Water cycles
Тема HYDROLOGY
Тема Hydrological cycles and budgets
Тема ATMOSPHERIC PROCESSES
Тема Meteorology and Atmospheric Dynamics: Climatology
Тема Meteorology and Atmospheric Dynamics: General circulation
Тема Meteorology and Atmospheric Dynamics: Mesoscale meteorology
Тема Meteorology and Atmospheric Dynamics: Precipitation
Название A 2XCO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model: 1. Present‐day seasonal climate simulation
Тип article
DOI 10.1029/92JD00615
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Atmospheres
Том 97
Первая страница 9989
Последняя страница 10009
Выпуск D9
Библиографическая ссылка Anthes, R. A., A cumulus parameterization scheme utilizing a one‐dimensional cloud model, Mon. Weather Rev., 105, 270–286, 1977.
Библиографическая ссылка Anthes, R. A., T. T.Warner, Development of hydrodynamical models suitable for air pollution and other mesometeorological studies, Mon. Weather Rev., 106, 1045–1078, 1987.
Библиографическая ссылка Anthes, R. A., E. Y.Hsie, Y. H.Kuo, Description of the Penn State/NCAR mesoscale model version 4 (MM4), NCAR Tech. NoteNCAR/TN‐282+STRw, 1987.
Библиографическая ссылка Auer, E. A., The rain versus snow threshold temperatures, Weatherwise, 67, 1974.
Библиографическая ссылка Barry, R. G., J.Chorley, Atmosphere, Weather and Climate, 406, Methuen, New York, 1987.
Библиографическая ссылка Blackmon, M. L., A climatological spectral study of the 500 mb geopotential height of the northern hemisphere, J. Atmos. Sci., 33, 1607–1623, 1976.
Библиографическая ссылка Davies, H. C., R. E.Turner, Updating prediction models by dynamical relaxation: An examination of the technique, Q. J. R. Meteorol. Soc., 103, 225–245, 1977.
Библиографическая ссылка Deardoff, J. W., Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation, J. Geophys. Res., 83, 1889–1903, 1978.
Библиографическая ссылка Dickinson, R. E., P. J.Kennedy, A.Henderson‐Sellers, M.Wilson, Biosphere‐atmosphere transfer scheme (BATS) for the NCAR community climate model, NCAR Tech. NoteNCAR/TN‐275+STR, 1986.
Библиографическая ссылка Giorgi, F., Simulation of regional climate using a limited area model nested in a general circulation model, J. of Clim., 3, 941–963, 1990.
Библиографическая ссылка Giorgi, F., Sensitivity of simulated summertime precipitation over the western United States to different physics parameterizations, Mon. Weather Rev., 119, 2870–2888, 1991.
Библиографическая ссылка Giorgi, F., G. T.Bates, On the climatological skill of a regional model over complex terrain, Mon. Weather Rev., 117, 2325–2347, 1989.
Библиографическая ссылка Giorgi, F., W. L.Chameides, Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model, J. Geophys. Res., 91, 14367–14376, 1986.
Библиографическая ссылка Giorgi, F., L. O.Mearns, Approaches to the simulation of regional climate change: A review, Rev. Geophys., 292, 191–216, 1991.
Библиографическая ссылка Giorgi, F., M. R.Marinucci, Validation of a regional atmospheric model over Europe: Sensitivity of wintertime and summertime simulations to selected physics parameterizations and lower boundary conditions, Q. J. R. Meteorol. Soc., 117, 1171–1206, 1991.
Библиографическая ссылка Giorgi, F., M. R.Marinucci, G.Visconti, Use of a limited area model nested in a general circulation model for regional climate simulation over Europe, J. Geophys. Res., 95, 18,413–18,431, 1990.
Библиографическая ссылка Giorgi, F., M. R.Marinucci, andG.Visconti, A 2XCO<sub>2</sub> climate change scenario over Europe generated using a limited area model nested in a general circulation model, 2: Climate change scenario,J. Geophys. Res., 97(D9), 1992.
Библиографическая ссылка Kiehl, J. T., V.Ramanathan, CO<sub>2</sub> radiative parameterization used in climate models: comparison with narrow band models and with laboratory data, J. Geophys. Res., 88, 5191–5202, 1983.
Библиографическая ссылка Kiehl, J. T., R. J.Wolski, B. P.Briegleb, V.Ramanathan, Documentation of radiation and cloud routines in the NCAR community climate model (CCM1), NCAR Tech. NoteNCAR/TN‐288+IA, 1987.
Библиографическая ссылка Legates, D. R., C. J.Willmott, Mean seasonal and spatial variability in gauge‐corrected global precipitation, Int. J. Climatol., 10, 111–127, 1990a.
Библиографическая ссылка Legates, D. R., C. J.Willmott, Mean seasonal and spatial variability in global surface air temperature, Theor. Appl. Clim., 41, 11–21, 1990b.
Библиографическая ссылка Manabe, S., Climate and the ocean circulation, 1, The atmospheric circulation and the hydrology of the earth's surface, Mon. Weather Rev., 97, 739–774, 1969.
Библиографическая ссылка McClatchey, R. A., R. W.Fenn, J. E. A.Selby, F. E.Volz, J. S.Garing, Optical properties of the atmosphereAFCRL‐71‐0279, 85Air Force Cambridge Res. Lab., Bedford, Mass., 1971.
Библиографическая ссылка Meehl, G. A., W. M.Washington, Sea surface temperatures computed by a simple ocean mixed layer coupled to an atmospheric GCM, J. Phys. Oceanogr., 15, 92,104, 1985.
Библиографическая ссылка Meehl, G. A., W. M.Washington, CO<sub>2</sub> climate sensitivity and snow‐sea‐ice albedo parameterization in an atmospheric GCM coupled to a mixed‐layer ocean model, Clim. Change, 16, 283–306, 1983.
Библиографическая ссылка Pitcher, E. J., R. C.Malone, V.Ranmnathan, M. L.Blackmon, K.Purl, W.Bourke, January and July simulations with a spectral general circulation model, J. Atmos. Sci., 40, 580–604, 1983.
Библиографическая ссылка Ramanathan, V., E. J.Pitcher, R. C.Malone, M. L.Blackmon, The response of a spectral general circulation model to refinements in radiative processes, J. Atmos. Sci., 40, 605–630, 1983.
Библиографическая ссылка Semtner, A. J., A model for the thermodynamic growth of sea ice in numerical investigations of climate, Clim. Change, 6, 27–37, 1976.
Библиографическая ссылка Shea, D. J., K. E.Trenberth, R. W.Reynolds, A global monthly sea surface temperature climatology, NCAR Tech. NoteNCAR/TN‐345+STR, 1990.
Библиографическая ссылка Slingo, J. M., A cloud parameterization scheme derived from GATE data for use with a numerical model, Q. J. R. Meteorol. Soc., 106, 341–362, 1980.
Библиографическая ссылка Trenberth, K. E., J. G.Olson, ECMWF Global Analyses 1979–1986: Circulation Statistics and Data Evaluation, NCAR Tech. NoteNCAR/TN‐300+STR, 1988.
Библиографическая ссылка World Survey of Climatology, 6, Climates of central and southern EuropeC. C.Wallen, 253, Elsevier, New York, 1970.
Библиографическая ссылка Washington, W. M., G. A.Meehl, Seasonal cycle experiment on the climate sensitivity due to a doubling of CO<sub>2</sub> with an atmospheric general circulation model coupled to a simple mixed layer ocean model, J. Geophys. Res., 89, 9475–9503, 1984.
Библиографическая ссылка Washington, W. M., L.VerPlank, A description of coupled General Circulation Models of the Atmosphere and Oceans used for Carbon Dioxide studies, NCAR Tech. NoteNCAR/TN‐271+EDD, 1986.
Библиографическая ссылка Washington, W. M., D. L.Williamson, A description of the NCAR global circulation models, Methods Comput. Phys., 17, 111–172, 1977.

Скрыть метаданые