Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Famiglietti, J. S.
Автор Wood, E. F.
Автор Sivapalan, M.
Автор Thongs, D. J.
Дата выпуска 1992
dc.description A catchment scale water balance model is presented and used to predict evaporation from the King's Creek catchment at the First ISLSCP Field Experiment site on the Konza Prairie, Kansas. The model incorporates spatial variability in topography, soils, and precipitation to compute the land surface hydrologie fluxes. A network of 20 rain gages was employed to measure rainfall across the catchment in the summer of 1987. These data were spatially interpolated and used to drive the model during storm periods. During interstorm periods the model was driven by the estimated potential evaporation, which was calculated using net radiation data collected at site 2. Model‐computed evaporation is compared to that observed, both at site 2 (grid location 1916‐BRS) and the catchment scale, for the simulation period from June 1 to October 9, 1987.
Формат application.pdf
Копирайт Copyright 1992 by the American Geophysical Union.
Тема First ISLSCP Field Experiment (FIFE)
Тема GEODESY AND GRAVITY
Тема Mass balance
Тема GLOBAL CHANGE
Тема Water cycles
Тема HYDROLOGY
Тема Vadose zone
Тема Evapotranspiration
Тема Hydrological cycles and budgets
Название A catchment scale water balance model for FIFE
Тип article
DOI 10.1029/92JD01049
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Atmospheres
Том 97
Первая страница 18997
Последняя страница 19007
Выпуск D17
Библиографическая ссылка Beven, K. J., On subsurface stormflow, An analysis of response times, Hydrol. Sci. J., 27, 505–521, 1982.
Библиографическая ссылка Beven, K. J., M. J.Kirkby, A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 241, 43–69, 1979.
Библиографическая ссылка Beven, K. J., E. F.Wood, Catchment geomorphology and the dynamics of runoff contributing areas, J. Hydrol., 65, 139–158, 1983.
Библиографическая ссылка Beven, K. J., M. J.Kirkby, N.Schofield, A. F.Tagg, Testing a physically‐based flood forecasting model (TOPMODEL) for three U. K. catchments, J. Hydrol., 69, 119–143, 1984.
Библиографическая ссылка Brooks, R. H., A. T.Corey, Hydraulic properties of porous media, Hydrol. Pap., 3, Colorado State Univ., Ft. Collins, 1964.
Библиографическая ссылка Brutsaert, W., Evaporation Into the Atmosphere, 299, D. Reidel, Norwell, Mass., 1982.
Библиографическая ссылка Famiglietti, J. S., E. F.Wood, Evapotranspiration and runoff from large land areas: Land surface hydrology for atmospheric general circulation models, Surv. Geophys., 12, 179–204, 1991a.
Библиографическая ссылка Famiglietti, J. S., E. F.Wood, Comparison of passive microwave and model derived estimates for soil moisture fieldsProceedings of the 5th International Colloquium on Physical Measurements and Signatures in Remote SensingEuropean Space AgencyNoordwijk, The Netherlands, 1991b.
Библиографическая ссылка Fritschen, L. J., P.Qian, Energy balance components from six sites in a native prairie, Symposium on FIFE, 37–41American Meteorological Society, Boston, Mass., 1990.
Библиографическая ссылка Hillel, D., Applications of Soil Physics, 385, Academic, San Diego, Calif., 1980.
Библиографическая ссылка Ibrahim, H. A., W.Brutsaert, Intermittent infiltration into soils with hysteresis, Proc. Am. Soc. Civ. E, J. Hydraul. Div., 94HY1, 113–137, 1968.
Библиографическая ссылка Jantz, D. R., R. F.Harner, H. T.Rowland, andD. A.Gier, Soil survey of Riley County and part of Geary County, Kansas, 71 pp.,U.S. Dept. of Agric., Soil Conserv. Serv. in cooperation withKansas Agric. Exp. Stn.,1975.
Библиографическая ссылка Milly, P. C. D., An event‐based simulation model of moisture and energy fluxes at a bare soil surface, Water Resour. Res., 2212, 1680–1692, 1986.
Библиографическая ссылка Paniconi, C., Hydrologic processes in variably saturated porous media: Analysis of numerical methods for solving the nonlinear Richards equation, and application to catchment scale simulations, Ph.D. thesis,Dep. of Civ. Eng. and Oper. Res., Princeton Univ.,Princeton, N. J.,1992.
Библиографическая ссылка Philip, J. R., The theory of infiltration,Soil Sci.,83,84,85,1957.
Библиографическая ссылка Priestly, C. H. B., R. J.Taylor, On the assessment of surface heat flux and evaporation using large scale parameters, Mon. Weather Rev., 100, 81–92, 1972.
Библиографическая ссылка Rawls, W. J., D. L.Brakensiek, K. E.Saxton, Estimation of soil water properties, Trans. ASAE, 255, 1316–13201328, 1982.
Библиографическая ссылка Reeves, M., E. E.Miller, Estimating infiltration for erratic rainfall, Water Resour. Res., 111, 102–110, 1975.
Библиографическая ссылка Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, 1, 318–333, 1931.
Библиографическая ссылка Sherman, L. K., Comparison of F‐curves derived by the methods of Sharp and Holtan and of Sherman and Mayer, Eos Trans. AGU, 24, 465–467, 1943.
Библиографическая ссылка Sivapalan, M., E. F.Wood, A multidimensional model of nonstationary space‐time rainfall at the catchment scale, Water Resour. Res., 237, 1289–1299, 1987.
Библиографическая ссылка Sivapalan, M., K.Beven, E. F.Wood, On hydrologic similarity, 2, A scaled model of storm runoff production, Water Resour. Res., 2312, 2266–2278, 1987.
Библиографическая ссылка Sivapalan, M., E. F.Wood, K. J.Beven, On hydrologic similarity, 3, A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation, Water Resour. Res., 261, 43–58, 1990.

Скрыть метаданые