Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Gavrilov, Nikolai M.
Автор Roble, Raymond G.
Дата выпуска 1994
dc.description Formulas are presented that parameterize the heating rate and coefficient of turbulent heat conduction produced by saturated internal gravity waves (IGW) in the upper atmosphere. Estimates of these values are made using observational data. The parameterization of IGW influences are introduced into a one‐dimensional model of global mean thermal and composition balances of the upper atmosphere. Computations are performed for different values of IGW energy fluxes entering into the upper atmosphere from below. It is shown that realistic vertical profiles of the global mean temperature can be obtained using different values of IGW energy flux into the upper atmosphere. Increasing the IGW intensity leads not only to an increase of the heating rate due to wave energy dissipation, but also to an increase in the coefficient of turbulent heat conduction and cooling rate produced by turbulence generated by the wave. So, near an altitude of 100 km the main part of solar heating is compensated by infrared cooling on one hand, and the main part of wave dissipation heating is compensated by turbulent cooling on the other hand. These quasi‐balances generally hold for different values of IGW intensity.
Формат application.pdf
Копирайт Copyright 1994 by the American Geophysical Union.
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Middle atmosphere: composition and chemistry
Тема ATMOSPHERIC PROCESSES
Тема Meteorology and Atmospheric Dynamics: Middle atmosphere dynamics
Тема Meteorology and Atmospheric Dynamics: Turbulence
Тема Meteorology and Atmospheric Dynamics: Waves and tides
Название The effect of gravity waves on the global mean temperature and composition structure of the upper atmosphere
Тип article
DOI 10.1029/94JD01313
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Atmospheres
Том 99
Первая страница 25773
Последняя страница 25780
Выпуск D12
Библиографическая ссылка Chao, W., S. R.Schoeberl, A note on the linear approximation of gravity wave saturation in the mesosphere, J. Atmos. Sci., 41, 1893–1898, 1984.
Библиографическая ссылка Chunchuzov, E. P., O. A.Matveeva, On the heating of atmosphere near mesopause in times of internal gravity waves propagation, Engl. Transl., Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 21, 661–662, 1985.
Библиографическая ссылка Ebel, A. J., Contributions of gravity waves to the momentum, heat and turbulent energy budget of the upper atmosphere and lower thermosphere, J. Atmos. Terr. Phys., 46, 727–737, 1984.
Библиографическая ссылка Fels, S. B., Analytic representations of standard atmosphere temperature profiles, J. Atmos. Sci., 43, 219–221, 1986.
Библиографическая ссылка Fomichev, V. I., G. M.Shved, Net radiative heating in the middle atmosphere, J. Atmos. Terr. Phys., 50, 671–688, 1988.
Библиографическая ссылка Fomichev, V. I., G. M.Shved, On the closeness of the middle atmosphere to the state of radiative equilibrium: An estimate of net dynamical heating, J. Atmos. Terr. Phys., 56, 479–485, 1994.
Библиографическая ссылка Fomichev, V. I., W. E.Ward, C.McLandress, The effects of variations in the oxygen mixing ratio in current climatological models on the 15μm CO<sub>2</sub> cooling and associated dynamical structure in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 1994.
Библиографическая ссылка Fritts, D. C., Gravity wave saturation in the middle atmosphere: A review of theory and observations, Rev. Geophys., 22, 275–308, 1984.
Библиографическая ссылка Fritts, D. C., T. J.Dunkerton, Fluxes of heat and constituents due to convectively unstable gravity waves, J. Atmos. Sci., 42, 549–556, 1985.
Библиографическая ссылка Fritts, D. C., W.Lu, Spectral estimates of gravity wave energy and momentum fluxes, II, Parameterization of wave forcing and variability, J. Atmos. Sci., 50, 3695–3713, 1993.
Библиографическая ссылка Fritts, D. C., S. A.Smith, T. E.Van Zand, Evidence of a saturated gravity‐wave spectrum throughout the atmosphere, MAP Handb., 20, 244–248, 1986.
Библиографическая ссылка Gavrilov, N. M., Parameterization of accelerations and heat flux divergence produced by internal gravity waves in the middle atmosphere, J. Atmos. Terr. Phys., 52, 707–713, 1990.
Библиографическая ссылка Gavrilov, N. M., G. M.Shved, On the closure of equation system for the turbulized layer of the upper atmosphere, Ann. Geophys., 31, 375–388, 1975.
Библиографическая ссылка Gavrilov, N. M., V. A.Yudin, Numerical modeling of vertical structure of gravity waves propagated from tropospheric sources, Engl. Transl., Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 22, 563–572, 1986.
Библиографическая ссылка Gavrilov, N. M., V. A.Yudin, Model for coefficients of turbulence and effective Prandtl number produced by breaking gravity waves in the upper atmosphere, J. Geophys. Res., 97, 7619–7624, 1992.
Библиографическая ссылка Ginzburg, E. I., G. I.Kuzin, Parameterization of turbulent mixing in the upper atmosphere, Investigations of Dynamical Processes in the Upper Atmosphere, 110–114, Moscow, 1985.
Библиографическая ссылка Hananian, A. A., The evaluations of diffusion coefficients in the middle atmosphere, Engl. Transl., Geomagn. Aeron., 24, 1023–1025, 1984.
Библиографическая ссылка Hananian, A. A., Experimental estimates of small‐scale turbulence in the middle atmosphere, Engl. Transl., Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 24, 95–98, 1988.
Библиографическая ссылка Hedin, A. E., MSIS‐86 thermospheric model, J. Geophys. Res., 92, 4649–4662, 1987.
Библиографическая ссылка Hines, C. O., Eddy diffusion coefficients due to instabilities in internal gravity waves, J. Geophys. Res., 75, 3937–3939, 1970.
Библиографическая ссылка Hodges, R. R., Generation of turbulence in the upper atmosphere by internal gravity waves, J. Geophys. Res., 72, 3455–3458, 1967.
Библиографическая ссылка Holton, J. R., X.Zhu, A further study of gravity wave induced drag and diffusion in the mesosphere, J. Atmos. Sci., 41, 2653–2662, 1984.
Библиографическая ссылка Johnson, F. S., B.Gottlieb, Eddy mixing and circulation at ionospheric levels, Planet. Space Sci., 18, 1707, 1970.
Библиографическая ссылка Johnson, F. S., E. M.Wilkins, Thermal upper limit on eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res., 70, 1281–1284, 1965.
Библиографическая ссылка Justus, C. G., Upper atmospheric mixing by gravity wavesConference on Environmental Impact of Aerospace Operation in the High AtmosphereDenver, Colo., 1973.
Библиографическая ссылка Justus, C. G., A.Woodrum, Short‐ and long‐period atmospheric variations between 25 and 200 km, NASA Tech. Rep.CR‐2203, 1973.
Библиографическая ссылка Kida, H., A numerical experiment on the general circulation of the middle atmosphere with a three‐dimensional model explicitly representing internal gravity waves and their breaking, Pure Appl. Geophys., 122, 731–746, 1984.
Библиографическая ссылка Lindzen, R. S., Turbulence and stress to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707–9714, 1981.
Библиографическая ссылка Lopez‐Puertas, M., M. A.Lopez‐Valverde, C. P.Rinsland, M. R.Gunson, Analysis of the upper atmosphere CO<sub>2</sub> (ν<sub>2</sub>) vibrational temperatures retrieved from ATMOS Spacelab 3 observations, J. Geophys. Res., 8, 14955–14977, 1993.
Библиографическая ссылка Matsuno, T. A., A quasi‐one‐dimensional model of the middle atmosphere circulation interacting with internal gravity waves, J. Meteorol. Soc. Jpn., 60, 215–226, 1982.
Библиографическая ссылка Mlynczak, M. G., S.Solomon, A detailed evaluation of the heating efficiency in the middle atmosphere, J. Geophys. Res., 98, 10517–10541, 1993.
Библиографическая ссылка Roble, R. G., Energetics of the mesosphere and thermosphere, inGeophysical Monograph Series, edited byT.Killeen, andR.Johnson, AGU, in press,1994.
Библиографическая ссылка Roble, R. G., R. E.Dickinson, How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16, 1441–1444, 1989.
Библиографическая ссылка Rodgers, C. D., F. W.Taylor, A. H.Muggeridge, M.Lopez‐Puertas, M. A.Lopez‐Valverde, Local thermodynamic equilibrium of carbon dioxide in the upper atmosphere, Geophys. Res. Lett., 19, 589–592, 1992.
Библиографическая ссылка Rozenfeld, S. H., On the damping of internal gravity waves due to generation of secondary harmonics, Engl. Transl., Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 19, 1011–1019, 1983.
Библиографическая ссылка Schoeberl, M. R., A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere, J. Geophys. Res., 90, 7999–8010, 1985.
Библиографическая ссылка Strobel, D. F., J. P.Apruzese, M. R.Schoeberl, Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere, J. Geophys. Res., 90, 13067–13072, 1985.
Библиографическая ссылка Teptin, G. M., Motions in the upper atmosphere observed with meteor tracks radars, Engl. Transl., Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 8, 243–263, 1972.
Библиографическая ссылка Waltersheid, R. L., Dynamical cooling induced by dissipating gravity waves, Geophys. Res. Lett., 8, 1235–1238, 1981.
Библиографическая ссылка Ward, W. E., V. I.Fomichev, On the role of atomic oxygen in the dynamics and energy budget of the mesosphere and lower thermosphere, Geophys. Res. Lett., 20, 1199–1202, 1993.
Библиографическая ссылка Weinstock, J., Theoretical relations between momentum deposition and diffusion caused by gravity waves, Geophys. Res. Lett., 9, 863–865, 1982a.
Библиографическая ссылка Weinstock, J., Nonlinear theory of gravity waves: Momentum deposition, generalized Raleigh friction and diffusion, J. Atmos. Sci., 39, 1698–1710, 1982b.
Библиографическая ссылка Weinstock, J., Heat flux induced by gravity waves, Geophys. Res. Lett., 10, 165–167, 1983.
Библиографическая ссылка Weinstock, J., Gravity wave saturation and eddy diffusion in the middle atmosphere, J. Atmos. Terr. Phys., 46, 1069–1082, 1984.
Библиографическая ссылка Wintersteiner, P. P., R. H.Picard, R. D.Sharma, J. R.Winik, R. A.Joseph, Line‐by‐line radiative excitation model for the nonequilibrium atmosphere: Application to CO<sub>2</sub> 15μm emission, J. Geophys. Res., 97, 18,083–18,117, 1992.

Скрыть метаданые