Автор |
López, R. E. |
Автор |
Reinking, R. F. |
Автор |
Hallett, J. |
Автор |
Rosenfeld, D. |
Дата выпуска |
1985 |
dc.description |
Aircraft microphysical and 5‐cm radar data from the second Florida Area Cumulus Experiment (FACE‐2) have been interrelated to study the development of precipitation in Florida cumuli. Both sets of data demonstrate the importance of the generation of large drops not only at temperatures warmer than freezing but also at altitudes where drops become supercooled. The radar data and, to a limited extent, the microphysical data support the suggestion that a considerable number of Florida cumuli reach very substantial supercoolings, to −10°C or −20°C for example, before producing drops large enough to generate a first echo. The existence of high updraft speeds, as detected by both the aircraft platform and the radar, implies short transit times of the droplets upward through the clouds and adds credibility to these observations. The radar data further indicate that if a cloud can grow above the −10°C level before generating an echo, then it will probably grow to much greater final altitudes than one that generates a first echo at temperature levels warmer than freezing. This may result from updrafts that rise free of the load of precipitation‐size drops in transit to the higher altitudes and then are enhanced owing to the release of latent heat of fusion derived from the larger amounts of supercooled liquid water transported to the higher altitudes, where a high rate of heat input from accelerated freezing is relatively more effective in maintaining convection. |
Формат |
application.pdf |
Копирайт |
Copyright 1985 by the American Geophysical Union. |
Тема |
ATMOSPHERIC COMPOSITION AND STRUCTURE |
Тема |
Cloud physics and chemistry |
Тема |
ATMOSPHERIC PROCESSES |
Тема |
Meteorology and Atmospheric Dynamics: Convective processes |
Название |
5‐cm radar echoes and their microphysical significance in Florida cumuli |
Тип |
article |
DOI |
10.1029/JD090iD06p10667 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Atmospheres |
Том |
90 |
Первая страница |
10667 |
Последняя страница |
10673 |
Выпуск |
D6 |
Библиографическая ссылка |
Bowen, E. G., The formation of rain by coalescence, Aust. J. Sci. Res., Ser. A, 3, 193, 1950. |
Библиографическая ссылка |
Cunning, J., R.Holle, P.Gannon, A.Watson, Convective evolution and merger in the FACE experimental area: Mesoscale convection and boundary layer interaction, J. Appl. Meteorol., 21, 953–977, 1982. |
Библиографическая ссылка |
Hallett, J., Measurement of size, concentration and structure of atmospheric particulates by the airborne continuous replicator, final report, Cloud Particle Replicator for Use on a Pressurized Aircraftcontract AFGL‐TR‐1149, 92Atmos. Sci. Cent., Desert Res. Inst., Reno, Nev., 1976a. |
Библиографическая ссылка |
Hallett, J., Measurement of size, concentration and structure of atmospheric particulates by the airborne continuous replicator, Part I, II, supplementary final report, Cloud Particle Replicator for Use on a Pressurized Aircraftcontract AFGL‐TR‐1149, 151Atmos. Sci. Cent., Desert Res. Inst., Reno, Nev., 1976b. |
Библиографическая ссылка |
Hallett, J., R.Sax, D.Lamb, A.Murty, Aircraft measurements of ice in Florida cumuli, Q. J. R. Meteorol. Soc., 104, 631–651, 1978. |
Библиографическая ссылка |
Johnson, R. H., Effects of cumulus convection on the structure and growth of the mixed layer over south Florida, Mon. Weather Rev., 105, 713–724, 1977. |
Библиографическая ссылка |
Jordan, J., J.Hallett, R.Reinking, FACE‐2 data reductions and analyses, IV, FACE‐2 microphysical data for analyses of seeded and unseeded cumulus towersRep. NOAA TM. ERL OWRM‐9, 308U.S. Dep. of Commer., Boulder, Colo., 1981. |
Библиографическая ссылка |
Jorgensen, D., P.Willis, A. Z‐R relationship for hurricanes, J. Appl. Meteorol., 21, 356–366, 1982. |
Библиографическая ссылка |
Lamb, D., J.Hallett, R.Sax, Mechanistic limitations to the release of latent heat during the natural and artificial glaciation of deep convective clouds, Q. J. R. Meteorol. Soc., 107, 935–954, 1981. |
Библиографическая ссылка |
Lawson, R. P., A system for airborne measurement of vertical air velocity, J. Appl. Meteorol., 18, 1363–1368, 1979. |
Библиографическая ссылка |
López, R. E., D.Blanchard, D.Rosenfeld, M.Casey, W.Hiscox, FACE‐2 data reductions and analyses, IV, S‐ and C‐band radar observations in support of FACE‐2Rep. NOAA TM. ERL OWRM‐7, 267U.S. Dep. of Commer., Boulder, Colo., 1981. |
Библиографическая ссылка |
López, R. E., P. T.GannonSr., D. O.Blanchard, C. C.Balch, Synoptic and regional circulation parameters associated with the degree of convective shower activity in south Florida, Mon. Weather Rev., 112, 686–703, 1984. |
Библиографическая ссылка |
Ludlam, F. H., The production of showers by the coalescence of cloud droplets, Q. J. R. Meteorol. Soc., 77, 402, 1951. |
Библиографическая ссылка |
Saunders, P., F.Ronne, A comparison between the height of cumulus clouds and the height of radar echoes secured from them, J. Appl. Meteorol., 1, 296–302, 1962. |
Библиографическая ссылка |
Sax, R., J.Hudson, Continentality of the South Florida summertime CCN aerosol, J. Atmos. Sci., 38, 1467–1479, 1981. |
Библиографическая ссылка |
, Staff, Cumulus Dynamics and Microphysics Program, 1980 Florida Area Cumulus Experiment (FACE): Operational summary and data inventoryRep. NOAA TM. ERL OWRM‐5, 181U.S. Dep. of Commer., Boulder, Colo., 1981. |
Библиографическая ссылка |
Woodward, E. B., The motion in and around isolated thermals, Q. J. R. Meteorol. Soc., 85, 144–151, 1959. |