Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор McKeen, S. A.
Автор Liu, S. C.
Автор Hsie, E.‐Y.
Автор Lin, X.
Автор Bradshaw, J. D.
Автор Smyth, S.
Автор Gregory, G. L.
Автор Blake, D. R.
Дата выпуска 1996
dc.description A useful application of the hydrocarbon measurements collected during the Pacific Exploratory Mission (PEM‐West A) is as markers or indices of atmospheric processing. Traditionally, ratios of particular hydrocarbons have been interpreted as photochemical indices, since much of the effect due to atmospheric transport is assumed to cancel by using ratios. However, an ever increasing body of observatonial and theoretical evidence suggests that turbulent mixing associated with atmospheric transport influences certain hydrocarbon ratios significantly. In this study a three‐dimensional mesoscale photochemical model is used to study the interaction of photochemistry and atmospheric mixing on select hydrocarbons. In terms of correlations and functional relationships between various alkanes, the model results and PEM‐West A hydrocarbon observations share many similar characteristics as well as explainable differences. When the three‐dimensional model is applied to inert tracers, hydrocarbon ratios andother relationships exactly follow those expected by simple dilution with model‐imposed “background air,” and the three‐dimensional results for reactive hydrocarbons are quite consistent with a combined influence of photochemistry and simple dilution. Analogous to these model results, relationships between various hydrocarbons collected during the PEM‐West A experiment appear to be consistent with this simplified picture of photochemistry and dilution affecting individual air masses. When hydrocarbons are chosen that have negligible contributions to clean background air, unambiguous determinations of the relative contributions to photochemistry and dilution can be estimated from the hydrocarbon samples. Both the three‐dimensional model results and the observations imply an average characteristic lifetime for dilution with background air roughly equivalent to the photochemical lifetime of butane for the western Pacific lower troposphere. Moreover, the dominance of OH as the primary photochemical oxidant downwind of anthropogenic source regions can be inferred from correlations between the highly reactive alkane ratios. By incorporating back‐trajectory information within the three‐dimensional model analysis, a correspondence between time and a particular hydrocarbon or hydrocarbon ratio can be determined, and the influence of atmospheric mixing or photochemistry can be quantified. Results of the three‐dimensional model study are compared and applied to the PEM‐West A hydrocarbon dataset, yielding a practical methodology for determining average OH concentrations and atmospheric mixing rates from the hydrocarbon measurements. Aircraft data taken below 2 km during wall flights east of Japan imply a diurnal average OH concentration of ∼3 × 10<sup>6</sup> cm<sup>−3</sup>. The characteristic time for dilution with background air is estimated to be ∼2.5 days for the two study areas examined in this work.
Формат application.pdf
Копирайт Copyright 1996 by the American Geophysical Union.
Тема Pacific Exploratory Mission‐West Phase A
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Troposphere: constituent transport and chemistry
Тема Constituent sources and sinks
Тема Troposphere: composition and chemistry
Тема ATMOSPHERIC PROCESSES
Тема Meteorology and Atmospheric Dynamics: Numerical modeling and data assimilation
Название Hydrocarbon ratios during PEM‐WEST A: A model perspective
Тип article
DOI 10.1029/95JD02733
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Atmospheres
Том 101
Первая страница 2087
Последняя страница 2109
Выпуск D1
Библиографическая ссылка Anthes, R. A., E. Y.Hsie, Y.‐H.Kuo, Description of the Penn State/NCAR mesoscale model version 4 (MM4), NCAR Tech. NoteNCAR/TN‐282+STR, 66Natl. Cent. for Atmos. Res., Boulder, Colo., 1987.
Библиографическая ссылка Atkinson, R., S. M.Aschmann, Kinetics of the gas phase reaction of Cl atoms with a series of organics at 296±2 K and atmospheric pressure, Int. J. Chem. Kinet., 17, 33–41, 1985.
Библиографическая ссылка Atkinson, R., Gas‐phase tropospheric chemistry of organic compounds: A review, Atmos. Environ., 24A, 1–41, 1990.
Библиографическая ссылка Bamber, D. J., P. G. W.Healey, B. M. R.Jones, S. A.Penkett, A. F.Tuck, G.Vaughan, Vertical profiles of tropospheric gases: Chemical consequences of stratospheric intrusions, Atmos. Environ., 18, 1756–1799, 1984.
Библиографическая ссылка Blake, D. R., F. S.Rowland, Global atmospheric concentrations and source strengths of ethane, Nature, 321, 231–233, 1986.
Библиографическая ссылка Blake, N., S. A.Penkett, K. C.Clemitshaw, P.Anwyl, P.Lightman, A. R. W.Marsh, Estimates of atmospheric hydroxyl radical concentrations from the observed decay of many reactive hydrocarbons in well‐defined urban plumes, J. Geophys. Res., 98, 2851–2864, 1993.
Библиографическая ссылка Blake, D. R., T. W.SmithJr., C. J.‐L.Wang, O. W.Wingenter, N. J.Blake, F. S.Rowland, andE. W.Mayer, Three‐dimensional distributions of nonmethane hydrocarbons and halocarbons over the northwestern Pacific during the 1991 PEM‐West A,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка Brost, R. A., The sensitivity to input parameters of atmospheric concentrations simulated by a regional chemical model, J. Geophys. Res., 93, 2371–2387, 1988.
Библиографическая ссылка Browell, E. V., et al.,Large‐scale air mass characteristics observed over the western Pacific during summertime,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка Calvert, J. G., Hydrocarbon involvement in photochemical smog formation in Los Angeles atmosphere, Environ. Sci. Technol., 10, 256–262, 1976.
Библиографическая ссылка Crawford, J., et al.,Photostationary state analysis of the NO<sub>2</sub>‐NO system based on airborne observations from the western and central North Pacific,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка DeMore, W. B., M. J.Molina, S. P.Sander, D. M.Golden, R. F.Hampson, M. J.Kurylo, C. J.Howard, A. R.Ravishankara, Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation 10, JPL Publ., 92‐20, Jet Propul. Lab., Pasadena, Calif., 1992.
Библиографическая ссылка Dignon, J., NO<sub>x</sub> and SO<sub>x</sub> emissions from fossil fuels: A global distribution, Atmos. Environ.26A, 1157–1164, 1992.
Библиографическая ссылка , Environmental Protection Agency (EPA), The 1985 NAPAP emissions inventory (version 2): Development of the annual data and modelers' tapesTech Rep. EPA‐600/7‐89‐012a, 692Natl. Tech. Info. Serv., Springfield, Va., 1989.
Библиографическая ссылка Gregory, G. L., A. S.Bachmeier, D. R.Blake, B. G.Jeikes, D. C.Thornton, J. D.Bradshaw, andY.Kondo, Chemical signatures of aged Pacific marine air: Mixed layer and free troposphere as measured during PEM WestA,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка HoellJr., J. M., et al.,Pacific Exploratory Mission‐West (PEM‐West A): September‐October 1991,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка Jobson, B. T., Z.Wu, L. A.Barrie, H.Niki, Seasonal trends of isoprene, C<sub>2</sub>‐C<sub>5</sub> alkanes, and acetylene at a remote boreal site in Canada, J. Geophys. Res., 99, 1589–1599, 1994.
Библиографическая ссылка Kato, N., H.Akimoto, Anthropogenic emission of SO<sub>2</sub> and NO<sub>x</sub> in Asia: Emission inventories, Atmos. Environ., 26A, 2997–3017, 1992.
Библиографическая ссылка Levy, H., Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science, 173, 141, 1971.
Библиографическая ссылка Lin, X., B. A.Ridley, J.Walega, G. F.Hübler, S. A.McKeen, E. Y.Hsie, M.Trainer, F. C.Fehsenfeld, S. C.Liu, A parameterization of subgrid scale convective cloud transport in a mesoscale regional chemistry model, J. Geophys. Res., 99, 25615–25630, 1994.
Библиографическая ссылка Liu, S. C., et al.,Model study of tropospheric trace species distributions during PEM‐West A,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка Logan, J. A., M. J.Prather, S. C.Wofsy, M. B.McElroy, Tropospheric chemistry: A global perspective, J. Geophys. Res., 86, 7210–7254, 1981.
Библиографическая ссылка Lovelock, J. E., Ionisation methods for the analysis of gases and vapors, Analt. Chem., 33, 162–178, 1961.
Библиографическая ссылка Lurmann, F. W., A. C.Lloyd, R.Atkinson, A chemical mechanism for use in long‐range transport/acid deposition computer modeling, J. Geophys. Res., 91, 10905–10936, 1986.
Библиографическая ссылка McKeen, S. A., S. C.Liu, Hydrocarbon ratios and photochemical history of air masses, Geophys. Res. Lett., 20, 2363–2366, 1993.
Библиографическая ссылка McKeen, S. A., M.Trainer, E. Y.Hsie, R. K.Tallamraju, S. C.Liu, On the indirect determination of atmospheric OH radical concentrations from reactive hydrocarbon measurements, J. Geophys. Res., 95, 7493–7500, 1990.
Библиографическая ссылка McKeen, S. A., E.‐Y.Hsie, M.Trainer, R.Tallamraju, S. C.Liu, A regional model study of the ozone budget in the eastern United States, J. Geophys. Res., 96, 10809–10845, 1991.
Библиографическая ссылка McKenna, D. S., C. J.Hord, J. M.Kent, Hydroxyl radical concentrations and Kuwait oil fire emission rates for March 1991, J. Geophys. Res., 1995.
Библиографическая ссылка Merrill, J. T., Trajectory results and interpretation for PEM‐West (A),J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка Nelson, P. F., S. M.Quigley, Non‐methane hydrocarbons in the atmosphere of Sydney, Australia, Environ. Sci. Technol., 16, 650–655, 1982.
Библиографическая ссылка Parrish, D. D., C. J.Hahn, E. J.Williams, R. B.Norton, F. C.Fehsenfeld, H. B.Singh, J. D.Shetter, B. W.Gandrud, B. A.Ridley, Indications of photochemical histories of pacific air masses from measurements of atmospheric trace species at Point Arena, California, J. Geophys. Res., 97, 15883–15902, 1992.
Библиографическая ссылка Parrish, D. D., C. J.Hahn, E. J.Williams, R. B.Norton, F. C.Fehsenfeld, H. B.Singh, J. D.Shetter, B. W.Gandrud, B. A.Ridley, Reply, J. Geophys. Res., 98, 14995–14997, 1993.
Библиографическая ссылка Roberts, J. M., F. C.Fehsenfeld, S. C.Liu, M. J.Bollinger, C.Hahn, D. L.Albritton, R. E.Sievers, Measurements of aromatic hydrocarbon ratios and NO<sub>x</sub> concentrations in the rural troposphere: Observations of air mass photochemical aging and NO<sub>x</sub> removal, Atmos. Environ., 18, 2421–2432, 1984.
Библиографическая ссылка Roberts, J. M., R. S.Hutte, F. C.Fehsenfeld, D. L.Albritton, R. E.Sievers, Measurements of anthropogenic hydrocarbon concentration ratios in the rural troposphere: Discrimination between background and urban sources, Atmos. Environ., 19, 1945–1950, 1985.
Библиографическая ссылка Rudolph, J., F. J.Johnen, Measurements of light atmospheric hydrocarbons over the Atlantic in regions of low biological activity, J. Geophys. Res., 95, 20583–20591, 1990.
Библиографическая ссылка Singh, H. B., J. R.Martinez, D. G.Hendry, R. J.Jaffe, W. B.Johnson, Assessment of the oxidant‐forming potential of light saturated hydrocarbons in the atmosphere, Environ. Sci. Technol., 15, 113–119, 1981.
Библиографическая ссылка Smolarkiewicz, P. K., A fully multidimensional positive advection transport algorithm with small implicit diffusion, J. Comput. Phys., 54, 325–362, 1984.
Библиографическая ссылка Smyth, S., et al.,Comparison of free tropospheric western Pacific air mass classification schemes for the PEM‐West A experiment,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка , State Statistical Bureau of China (SSBC), The Yearbook of Energy Statistics of China 1989, in Chinese, China Stat. Publ., Beijing, 1990.
Библиографическая ссылка Talbot, R. W., et al.,Chemical characteristics of continental outflow from Asia to the troposphere over the western Pacific Ocean during September‐October 1991: Results from PEM‐West A,J. Geophys. Res., 101(D1), 1996.
Библиографическая ссылка Trainer, M., et al., Correlation of ozone with NO<sub>y</sub> in photochemically aged air, J. Geophys Res, 98, 2917–2925, 1993.
Библиографическая ссылка , United Nations (UN), World Energy Statistics and Balances 1985–1988, 386, Int. Energy Agency/Org. Econ. Coop. Dev. (IEA/OECD), Paris, 1990.

Скрыть метаданые