Автор |
Zent, Aaron P. |
Автор |
Haberle, Robert M. |
Автор |
Houben, Howard C. |
Автор |
Jakosky, Bruce M. |
Дата выпуска |
1993 |
dc.description |
We have written a one‐dimensional numerical model of the exchange of H<sub>2</sub>O between the atmosphere and subsurface of Mars through the planetary boundary layer (PBL). Our goal is to explore the mechanisms of H<sub>2</sub>O exchange and to elucidate the role played by the regolith in the local H<sub>2</sub>O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum: radiation, sensible heat flux, and advection for heat. The model differs from Flasar and Goody by use of appropriate Viking‐based physical constants and inclusion of the radiative effects of atmospheric dust. The pressure gradient force is specified or computed from a simple slope model. The subsurface model accounts for conduction of heat and diffusion of H<sub>2</sub>O through a porous adsorbing medium in response to diurnal forcing. The model is initialized with depth‐independent H<sub>2</sub>O concentrations (2 kg m<sup>−3</sup>) in the regolith and a dry atmosphere. The model terminates when the atmospheric H<sub>2</sub>O column abundance stabilizes to 0.1% per sol. Results suggest that in most cases, the flux through the Martian surface reverses twice in the course of each sol. In the midmorning, the regolith begins to release H<sub>2</sub>O to the atmosphere and continues to do so until midafternoon, when it once more becomes a sink. It remains an H<sub>2</sub>O sink throughout the Martian night. In the early morning and late afternoon, while the atmosphere is convective, the atmosphere supplies H<sub>2</sub>O to the ground at a rapid rate, occasionally resulting in strong pulses of H<sub>2</sub>O into the ground. The model also predicts that for typical conditions, perhaps 15–20 sols are required for the regolith to supply an initially dry atmosphere with its equilibrium load. The effects of surface albedo, thermal inertia, solar declination, atmospheric optical depth, and regolith pore structure are explored. Increased albedo cools the regolith, so less H<sub>2</sub>O appears in the atmospheric column above a bright surface. The friction velocity is higher above a dark surface, so there is more diurnal H<sub>2</sub>O exchange; relative humidities are much higher above a bright surface. Thermal inertia I affects the propagation of energy through a periodically heated homogeneous surface. Our results suggest that higher thermal inertia forces more H<sub>2</sub>O into the atmosphere because the regolith is warmer at depth. Surface stresses are higher above a low I surface, but there is less diurnal exchange because the atmosphere is dry. The latitude experiment predicts that the total diurnal insolation is more important to the adsorptively controlled H<sub>2</sub>O column abundance than the peak daytime surface temperature. Fogs and high relative humidity will be far more prevalent in the winter hemisphere. The dust opacity of the atmosphere plays a very significant role; the PBL height, column abundances, relative humidity, and surface stresses all increase very strongly as the optical depth approaches zero. The dust opacity of the atmosphere must be considered in subsequent PBL models. |
Формат |
application.pdf |
Копирайт |
Copyright 1993 by the American Geophysical Union. |
Тема |
Martian Surface and Atmosphere Through Time |
Тема |
PLANETARY SCIENCES: SOLID SURFACE PLANETS |
Тема |
Planetology: Solid Surface Planets and Satellites: Meteorology |
Тема |
Planetology: Solid Surface Planets and Satellites: Surfaces |
Название |
A coupled subsurface‐boundary layer model of water on Mars |
Тип |
article |
DOI |
10.1029/92JE02805 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Planets |
Том |
98 |
Первая страница |
3319 |
Последняя страница |
3337 |
Выпуск |
E2 |
Библиографическая ссылка |
Ballou, E. V., P. C.Wood, T.Wydevan, M. E.Lewhalt, R. E.Mack, Chemical interpretation of Viking Lander 1 life detection experiment, Nature, 271, 644–645, 1978. |
Библиографическая ссылка |
Barker, E. S., Martian atmospheric water vapor observations: 1972–1974 apparition, Icarus, 28, 247–268, 1976. |
Библиографическая ссылка |
Clifford, S. M., D.Hillel, The stability of ground ice in the equatorial region of Mars, J. Geophys. Res., 88, 2456–2474, 1983. |
Библиографическая ссылка |
Colburn, D. S., J. B.Pollack, R. M.Haberle, Diurnal variations in optical depth at Mars, Icarus, 79, 159–189, 1989. |
Библиографическая ссылка |
Davies, D. W., The vertical distribution of Mars water vapor, J. Geophys. Res., 84, 2875–2879, 1979. |
Библиографическая ссылка |
Fanale, F. P., W. A.Cannon, Adsorption on the Martian regolith, Nature, 230, 502–504, 1971. |
Библиографическая ссылка |
Farmer, C. B., Liquid water on Mars, Icarus, 28, 279–289, 1976. |
Библиографическая ссылка |
Farmer, C. B., P. E.Doms, Global seasonal variation of water vapor on Mars and the implications for permafrost, J. Geophys. Res., 84, 2881–2888, 1979. |
Библиографическая ссылка |
Farmer, C. B., D. W.Davies, A. L.Holland, D. D.LaPorte, P. E.Doms, Mars: Water vapor observations from the Viking orbiters, J. Geophys. Res., 82, 4225–4248, 1977. |
Библиографическая ссылка |
Flasar, F. M., R. M.Goody, Diurnal behaviour of water on Mars, Planet Space Sci., 24, 161–181, 1976. |
Библиографическая ссылка |
Gierasch, P. J., R. M.Goody, The effect of dust on the temperature structure of the Martian atmosphere, Planet. Space Sci., 16, 615–646, 1968. |
Библиографическая ссылка |
Haberle, R. M., B. M.Jakosky, Sublimation and transport of water from the north polar cap on Mars, J. Geophys. Res., 95, 1423–1437, 1990. |
Библиографическая ссылка |
Haberle, R. M., B. M.Jakosky, Atmospheric effects on the remote determination of thermal inertia on Mars, Icarus, 90, 187–204, 1991. |
Библиографическая ссылка |
Haberle, R. M., H. C.Houben, R.Hertenstein, T.Herdtle, A boundary layer model for Mars: Comparison with Viking lander and entry data, J. Atmos. Sci., 1993. |
Библиографическая ссылка |
Hart, H. M., Seasonal changes in the abundance and vertical distribution of water vapor in the atmosphere of Mars, Ph.D. dissertation,Univ. of Colo.,Boulder,1989. |
Библиографическая ссылка |
Jakosky, B. M., The role of seasonal reservoirs in the Mars water cycle, 1, Seasonal exchange of water with the regolith, Icarus, 55, 1–18, 1983. |
Библиографическая ссылка |
Jakosky, B. M., C. B.Farmer, The seasonal and global behavior of water in the Mars atmosphere: Complete global results of the Viking atmospheric water detector, J. Geophys. Res., 87, 2999–3019, 1982. |
Библиографическая ссылка |
Jakosky, B. M., R. M.Haberle, The seasonal behavior of water on Mars, Mars, 969–1016, University Arizona Press, Tucson, 1992. |
Библиографическая ссылка |
Jakosky, B. M., R. W.Zurek, M. R.LaPointe, The observed day‐to‐day variability of Mars atmospheric water vapor, Icarus, 73, 80–90, 1988. |
Библиографическая ссылка |
Kieffer, H. H., Soil and surface temperatures at the Viking landing sites, Science, 194, 1344–1346, 1976. |
Библиографическая ссылка |
Kieffer, H. H., T. Z.Martin, A. R.Peterfreund, B. M.Jakosky, E. D.Miner, F. D.Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82, 4249–4295, 1977. |
Библиографическая ссылка |
Mellor, G. L., T.Yamada, A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 31, 1791–1806, 1974. |
Библиографическая ссылка |
Mellor, G. L., T.Yamada, Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982. |
Библиографическая ссылка |
Mooney, R. W., A. G.Keenan, L. A.Wood, Adsorption of water vapor by montmorillonite, I, Heat of desorption and application of BET theory, J. Am. Chem. Soc., 74, 1367–1371, 1952. |
Библиографическая ссылка |
Moore, H. J., R. E.Hutton, R. F.Scott, C. R.Spitzer, R. W.Shorthill, Surface materials at the Viking landing sites, J. Geophys. Res., 82, 4497–4523, 1977. |
Библиографическая ссылка |
Palluconi, F. D., H. H.Kieffer, Thermal inertia mapping of Mars from 60°S to 60°N, Icarus, 45, 415–426, 1981. |
Библиографическая ссылка |
Pollack, J. B., D.Colburn, R.Kahn, J.Hunter, W.Van Camp, C. E.Carlston, M. R.Wolf, Properties of aerosols in the Martian atmosphere, as inferred from Viking imaging data, J. Geophys. Res., 82, 4479–4496, 1977. |
Библиографическая ссылка |
Ryan, J. A., R. D.Sharman, H<sub>2</sub>O frost point detection on Mars?, J. Geophys. Res., 86, 503–511, 1981. |
Библиографическая ссылка |
Ryan, J. A., R. D.Sharman, R. D.Lucich, Mars water vapor, Near‐surface, J. Geophys. Res., 87, 7279–7284, 1982. |
Библиографическая ссылка |
Sutton, J. L., C. B.Leovy, J. E.Tillman, Diurnal variation of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites, J. Atmos. Sci., 35, 2346–2355, 1978. |
Библиографическая ссылка |
Toon, O. B., J. B.Pollack, W.Ward, J. A.Burns, K.Bilski, The astronomical theory of climate change on Mars, Icarus, 44, 552–607, 1980. |
Библиографическая ссылка |
Winter, D. F., J. M.Saari, A particulate thermophysical model of the lunar soil, Astrophys. J., 156, 1135–1151, 1969. |