Автор |
Lenardic, A. |
Автор |
Kaula, W. M. |
Автор |
Bindschadler, D. L. |
Дата выпуска |
1993 |
dc.description |
Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle ≈ 1 km<sup>3</sup> of crust per year under favorable conditions. |
Формат |
application.pdf |
Копирайт |
Copyright 1993 by the American Geophysical Union. |
Тема |
PLANETARY SCIENCES: SOLID SURFACE PLANETS |
Тема |
Planetology: Solid Surface Planets and Satellites: Tectonics |
Тема |
Planetology: Solid Surface Planets and Satellites: Interiors |
Название |
A mechanism for crustal recycling on Venus |
Тип |
article |
DOI |
10.1029/93JE01799 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Planets |
Том |
98 |
Первая страница |
18697 |
Последняя страница |
18705 |
Выпуск |
E10 |
Библиографическая ссылка |
Bercovici, D., G.Schubert, G. A.Glatzmaier, A.Zebib, Three‐dimensional thermal convection in a spherical shell, J. Fluid Mech., 206, 75–104, 1989. |
Библиографическая ссылка |
Bindschadler, D. L., E. M.Parmentier, Mantle flow tectonics: The influence of a ductile lower crust and implications for the formation of large scale features on Venus, J. Geophys. Res., 95, 21329–21344, 1990. |
Библиографическая ссылка |
Bindschadler, D. L., G.Schubert, W. M.Kaula, Venus coldspots and hotspots: Global tectonics and mantle dynamics of Venus, J. Geophys. Res., 97, 13495–13532, 1992. |
Библиографическая ссылка |
Boura, A., B.Gebhart, The stability of vertical flow which arises from combined buoyancy modes, Am. Inst. Chem. Eng. J., 22, 94–102, 1976. |
Библиографическая ссылка |
Busse, F. H., A model of time‐periodic mantle flow, Geophys. J. R. Astron. Soc., 52, 1–12, 1978. |
Библиографическая ссылка |
Caristan, Y., The transition from high temperature creep to fracture in Maryland diabase, J. Geophys. Res., 87, 6781–6790, 1982. |
Библиографическая ссылка |
Deardorff, J. W., G. E.Willis, B. H.Stockton, Laboratory studies of the entrainment zone of a convectively mixed layer, J. Fluid Mech., 100, 41–64, 1980. |
Библиографическая ссылка |
Elder, J., Convective self‐propulsion of continents, Nature, 214, 657–660, 1967. |
Библиографическая ссылка |
England, P. C., T. J. B.Holland, Archimedes and the Tauern eclogites: The role of buoyancy in the preservation of exotic eclogite blocks, Earth Planet. Sci. Lett., 44, 287–294, 1979. |
Библиографическая ссылка |
Goetze, C., The mechanisms of creep in olivine, Philos. Trans. R. Soc., Ser. A, 288, 99–119, 1978. |
Библиографическая ссылка |
Grimm, R. E., S. C.Solomon, Viscous relaxation of crater relief on Venus: Constraints on crustal thickness and thermal gradient, J. Geophys. Res., 93, 11911–11929, 1988. |
Библиографическая ссылка |
Grimm, R. E., R. H.Herrick, R. J.Phillips, Highlander III: On the origin and evolution of large uplands on Venus (abstract), Lunar Planet. Sci., 23, 453–454, 1992. |
Библиографическая ссылка |
Janle, P., D.Jannsen, Tectonics of the southern escarpment of Ishtar Terra on Venus from observations of morphology and gravity, Earth Moon Planets, 31, 141–155, 1984. |
Библиографическая ссылка |
Jeong, J. T., H. K.Moffatt, Free‐surface cusps associated with flow at low Reynolds number, J. Fluid. Mech., 241, 1–22, 1992. |
Библиографическая ссылка |
Joseph, D. D., K.Nguyen, G. S.Beavers, Non‐uniqueness and the stability of the configuration of flow of immiscible fluids with different viscosities, J. Fluid Mech., 141, 319–345, 1984. |
Библиографическая ссылка |
Joseph, D. D., J.Nelson, M.Renardy, Y.Renardy, Two‐dimensional cusped interfaces, J. Fluid. Mech., 223, 383–409, 1991. |
Библиографическая ссылка |
Kantha, L. H., O. M.Phillips, R. S.Azad, On turbulent entrainment at a stable density interface, J. Fluid Mech., 79, 753–768, 1977. |
Библиографическая ссылка |
Kaula, W. M., Compositional evolution of Venus, Evolution of the Earth and Planets, Geophys. Monogr. Ser., 74E.Takahashi, R.Jeanloz, D.Rubie, 27–40, AGU, Washington, D.C., 1993. |
Библиографическая ссылка |
Kiefer, W. S., B. H.Hager, Mantle downwelling and crustal convergence: A model for Ishtar Terra, Venus, J. Geophys. Res., 96, 20967–20980, 1991. |
Библиографическая ссылка |
King, S. D., A.Raefsky, B. H.Hager, ConMan: Vectorizing a finite element code for incompressible two‐dimensional convection in the Earth's mantle, Phys. Earth Planet. Inter., 59, 195–207, 1990. |
Библиографическая ссылка |
Kohlstedt, D. L., Rheology of the crust and upper mantle of Venus: Constraints imposed by laboratory experiments (abstract), Workshop on Mountain Belts on Venus and Earth, 24Lunar and Planetary Institute, Houston, Tex., 1992. |
Библиографическая ссылка |
Lallemand, S. E., P.Schnurle, S.Manoussis, Reconstruction of subduction zone paleogeometries and quantification of upper plate material losses caused by tectonic erosion, J. Geophys. Res., 97, 217–239, 1992. |
Библиографическая ссылка |
Lenardic, A., W. M.Kaula, A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces, J. Geophys. Res., 98, 8243–8260, 1993. |
Библиографическая ссылка |
Lenardic, A., W. M.Kaula, D. L.Bindschadler, The tectonic evolution of Western Ishtar Terra, Venus, Geophys. Res. Lett., 18, 2209–2212, 1991. |
Библиографическая ссылка |
Lenardic, A., W. M.Kaula, D. L.Bindschadler, Maxwell and the Andes: Analogous structures? (abstract), Lunar Planet. Sci., 23, 773–774, 1992. |
Библиографическая ссылка |
Lister, J. R., Selective withdrawal from a viscous two‐layer system, J. Fluid. Mech., 198, 231–254, 1989. |
Библиографическая ссылка |
Liu, M., C. G.Chase, Boundary‐layer model of mantle plumes with thermal and chemical diffusion and buoyancy, Geophys. J. Int., 104, 433–440, 1991. |
Библиографическая ссылка |
McKEnzie, D., P. G.Ford, C.Johnson, B.Parsons, G. H.Pettengill, D. T.Sandwell, S.Saunders, S. C.Solomon, Features on Venus generated by plate boundary processes, J. Geophys. Res., 97, 13533–13544, 1992. |
Библиографическая ссылка |
Oldenburg, C. M., F. J.Spera, D. A.Yuen, G.Sewell, Dynamic mixing in magma bodies: Theory, simulations, and implications, J. Geophys. Res., 94, 9215–9236, 1989. |
Библиографическая ссылка |
Olson, P., An experimental approach to thermal convection in a two‐layered mantle, J. Geophys. Res., 89, 11,293–11,301, 1984. |
Библиографическая ссылка |
Parmentier, E. M., P. C.Hess, Chemical differentiation of a convecting planetary interior: Consequences for one‐plate planets such as Venus (abstract), Lunar Planet. Sci., 23, 1037–1038, 1992. |
Библиографическая ссылка |
Phillips, R. J., R. E.Grimm, Generation of basaltic crust on Venus (abstract), Lunar Planet. Sci., 21, 958–959, 1990. |
Библиографическая ссылка |
Sandwell, D. T., G.Schubert, Evidence for retrograde lithospheric subduction on Venus, Science, 257, 766–770, 1992. |
Библиографическая ссылка |
Shelton, G., J.Tullis, Experimental flow laws for crustal rocks (abstract), Eos Trans. AGU, 62, 396, 1981. |
Библиографическая ссылка |
Shreve, R. L., M.Cloos, Dynamics of sediment subduction, melange formation, and prism accretion, J. Geophys. Res., 91, 10229–10245, 1986. |
Библиографическая ссылка |
Sleep, N. H., Gradual entrainment of a chemical layer at the base of the mantle by overlying convection, Geophys. J., 95, 437–447, 1988. |
Библиографическая ссылка |
Taylor, G. I., The formation of emulsions in definable fields of flow, Proc. R. Soc. London, Ser. A, 146, 501–523, 1934. |
Библиографическая ссылка |
Turcotte, D. L., A heat pipe mechanism for volcanism and tectonics on Venus, J. Geophys. Res., 94, 2779–2785, 1989. |
Библиографическая ссылка |
Turcotte, D. L., G.Schubert, Geodynamics Applications of Continuum Physics to Geologic Problems, John Wiley, New York, 1982. |
Библиографическая ссылка |
Turner, J. S., The influence of molecular diffusivity on turbulent entrainment across a density interface, J. Fluid Mech., 33, 639–656, 1968. |
Библиографическая ссылка |
Turner, J. S., Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows, J. Fluid Mech., 173, 431–471, 1986. |
Библиографическая ссылка |
vonHuene, R., D. W.Scholl, Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust, Rev. Geophys., 29, 279–316, 1991. |
Библиографическая ссылка |
Warner, J. L., Sedimentary processes and crustal cycling on Venus, J. Geophys. Res., 88, 1495–1500, 1983. |
Библиографическая ссылка |
Williams, D. R., V.Pan, Consequences of a hydrous mantle for Venus tectonics: Predictions for Magellan, Geophys Res. Lett., 17, 1397–1400, 1990. |
Библиографическая ссылка |
Zuber, M. T., Constraints on the lithospheric structure of Venus from mechanical models and tectonic surface features, Proc. Lunar Planet. Sci. Conf. 17, Part 2, J. Geophys. Res., 92, Suppl., E541–E551, 1987. |