Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор López‐Valverde, M. A.
Автор López‐Puertas, M.
Дата выпуска 1994
dc.description A radiative transfer model to study the infrared (1–20 μm) emissions of the CO and CO<sub>2</sub> molecules in the atmosphere of Mars has been developed. The model runs from the planet's surface up to 180 km and has been especially elaborated to study non‐local thermodynamic equilibrium (non‐LTE) situations. It includes the most important energy levels and vibration‐rotation bands able to give a significant atmospheric emission or produce a significant cooling/heating rate. Exchanges of energy in thermal and nonthermal (vibrational‐vibrational) collisions as well as by radiative processes have been included. An exhaustive review of the rate constants for vibrational‐thermal and vibrational‐vibrational collisional exchanges has been carried out. Radiative transfer processes have been treated by using a modified Curtis matrix formulation. The populations of the excited vibrational levels for nighttime conditions are presented along with a sensitivity study of their variations to the kinetic temperature profile and to collisional rate constants. The populations of the CO<sub>2</sub>(0,ν<sub>2</sub>,0) levels follow LTE up to about 85 km with the radiative transfer processes playing a very important role in maintaining this situation above the tropopause. This result is practically insensitive to plausible variations in the kinetic temperature of the troposphere. The uncertainties in the rate constants play an important role in determining the populations of the levels at thermospheric altitudes, but they are of little significance for the heights where they start departing from LTE. The CO<sub>2</sub>(0,0°,1) level breaks down from LTE at about 60 km, the laser bands at 10 μm giving a significant contribution to its population in the Martian mesosphere. The CO(1) level starts departing around 50 km and is noticeably enhanced in the upper thermosphere by absorption of upwelling flux from the planet's surface.
Формат application.pdf
Копирайт Copyright 1994 by the American Geophysical Union.
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Radiation: transmission and scattering
Тема Middle atmosphere: composition and chemistry
Тема ATMOSPHERIC PROCESSES
Тема Meteorology and Atmospheric Dynamics: Radiative processes
Тема PLANETARY SCIENCES: SOLID SURFACE PLANETS
Тема Planetology: Solid Surface Planets and Satellites: Atmospheric composition and chemistry
Название A non‐local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars: 1. Theoretical basis and nighttime populations of vibrational levels
Тип article
DOI 10.1029/94JE00635
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Planets
Том 99
Первая страница 13093
Последняя страница 13115
Выпуск E6
Библиографическая ссылка Allen, D. C., T.Scragg, C. J. S. M.Simpson, Low temperature fluorescence studies of the deactivation of the bend‐stretch manifold of CO<sub>2</sub>, Chem. Phys., 51, 279–298, 1980.
Библиографическая ссылка Bailey, R. T., F. R.Cruickshank, D.Pugh, K. M.Middleton, Vibration‐vibration energy transfer kinetics monitored by thermal lens, J. Chem. Soc. Faraday Trans., 81, 255–265, 1985.
Библиографическая ссылка Bauer, S. H., J. F.Caballero, R.Curtis, J. R.Wiesenfeld, Vibrational relaxation rates of CO<sub>2</sub>(001) with various collision partners for <300 K, J. Chem. Phys., 91, 1778–1785, 1987.
Библиографическая ссылка Billebaud, F., J.Crovisier, E.Lellouch, T.Encrenaz, J. P.Maillard, High‐resolution infrared spectrum of CO on Mars: Evidence for emission lines, Planet. Space Sci., 39, 213–218, 1991.
Библиографическая ссылка Bittner, H., K. H.Fricke, Dayside temperatures of the Martian upper atmosphere, J. Geophys. Res., 92, 12045–12055, 1987.
Библиографическая ссылка Bougher, S. W., R. E.Dickinson, Mars mesosphere and thermosphere, 1, Global mean heat budget and thermal structure, J. Geophys. Res., 93, 7325–7337, 1988.
Библиографическая ссылка Bougher, S. W., R. G.Roble, Comparative terrestrial planet thermospheres, 1, Solar cycle variation of global mean temperatures, J. Geophys. Res., 96, 11045–11055, 1991.
Библиографическая ссылка Buchwald, M. I., G. J.Wolga, Vibrational relaxation of CO<sub>2</sub>(001) by atoms, J. Chem. Phys., 62, 2828–2832, 1975.
Библиографическая ссылка Curtis, A. R., The computation of radiative heating rates in the atmosphere, Proc. R. Soc. London, A, 236, 156–159, 1956.
Библиографическая ссылка Deming, D., M. J.Mumma, Modelling of the 10 μm natural laser emission from the mesospheres of Mars and Venus, Icarus, 55, 356–368, 1983.
Библиографическая ссылка Deming, D., F.Espenak, D.Jennings, T.Kostiuk, M. J.Mumma, D.Zipoy, Observations of the 10 μm natural laser emission from the mesospheres of Mars and Venus, Icarus, 55, 347–355, 1983.
Библиографическая ссылка Dickinson, R. E., Infrared radiative heating and cooling in the Venusian mesosphere, I, Global mean radiative equilibrium, J. Atmos. Sci., 29, 1531–1556, 1972.
Библиографическая ссылка Dickinson, R. E., Infrared radiative emission in the Venusian mesosphere, Journal of Atmospheric Science, 33, 290–303, 1976.
Библиографическая ссылка Dickinson, R. E., S. W.Bougher, Venus mesosphere and thermosphere, 1, Heat budget and thermal structure, J. Geophys. Res., 91, 70–80, 1986.
Библиографическая ссылка Farmer, C. B., R. H.Norton, A high‐resolution atlas of the infrared spectrum of the Sun and the Earth's atmosphere from space, II, NASA Ref. Publ., 1224, 1989.
Библиографическая ссылка Finzi, J., C. B.Moore, Relaxation of CO<sub>2</sub>(10°1), CO<sub>2</sub>‐(02°1) and N<sub>2</sub>O(10°1) vibrational levels by near resonant V→V energy transfer, J. Chem. Phys., 63, 2285–2288, 1975.
Библиографическая ссылка Goody, R. M., Y. L.Yung, Atmospheric Radiation: Theoretical Basis, Oxford University Press, New York, 1989.
Библиографическая ссылка Gordiets, B. F., V. Ya.Panchenko, Nonequilibrium infrared radiation and the natural laser effect in the atmospheres of Venus and Mars, Cosmic Res., 21, 725–734, 1983.
Библиографическая ссылка Inoue, G., S.Tsuchiya, Vibration‐vibration energy transfer of CO<sub>2</sub>(00°1) with N<sub>2</sub> and CO at low temperatures, J. Phys. Soc. Jpn., 39, 479–486, 1975.
Библиографическая ссылка Kaplan, D. I., Environment of MarsNASA Tech. Memo., 1004 70, 1988.
Библиографическая ссылка Kaufl, H. U., H.Rothermel, S.Drapatz, Investigation of the Martian atmosphere by 10 micron heterodyne spectroscopy, Astron. Astrophys., 136, 319–325, 1984.
Библиографическая ссылка Kutepov, A. A., D.Kunze, D. G.Hummer, G. B.Rybicki, The solution of radiative transfer problems in molecular bands without the LTE assumption by accelerated lambda iteration methods, J. Quant. Spectrosc. Radiat. Transfer, 46, 347–365, 1991.
Библиографическая ссылка Leovy, C. B., The atmosphere of Mars, Sci. Am., 237, 34–43, 1977.
Библиографическая ссылка Lepoutre, F., G.Louis, H.Manceau, Collisional relaxation in CO<sub>2</sub> between 180 K and 400 K measured by the spectrophone method, Chem. Phys. Lett., 48, 509–615, 1977.
Библиографическая ссылка Lewittes, M. E., C. C.Davis, R. A.McFarlane, Vibrational deactivation of CO(v‐l) by oxygen atmos, J. Chem. Phys., 69, 1952–1957, 1978.
Библиографическая ссылка López‐Puertas, M., R.Rodrigo, A.Molina, F. W.Taylor, A non‐LTE radiative transfer model for infrared bands in the middle atmosphere, I, Theoretical basis and application to CO<sub>2</sub> 15 μm bands, J. Atmos. Terr. Phys., 48, 729, 1986.
Библиографическая ссылка López‐Puertas, M., M. A.López‐Valverde, F. W.Taylor, Vibrational temperatures and radiative cooling of the CO<sub>2</sub> 15 μm bands in the middle atmosphere, Q. J. R. Meteorol. Soc., 118, 499–532, 1992.
Библиографическая ссылка López‐Puertas, M., M. A.López‐Valverde, C. P.Rinsland, M. R.Gunson, Analysis of the upper atmosphere CO<sub>2</sub> (v2) vibrational temperatures retrieved from ATMOS‐Spacelab 3 observations, J. Geophys. Res., 97, 20469–20478, 1992.
Библиографическая ссылка López‐Valverde, M. A., andM.López‐Puertas, A non‐LTE radiative transfer model for infrared emissions in the atmosphere of Mars, 2, Daytime populations of vibrational levels,J. Geophys. Res., 99(E6), 1994.
Библиографическая ссылка Lunt, S. L., C. T.Wickham‐Jones, C. J. S. M.Simpson, Rate constants for the deactivation of the 15 μm band of carbon dioxide by the collisions partners CH<sub>3</sub>F, CO<sub>2</sub>, N<sub>2</sub>, Ar and Kr over the temperature range 300 to 150 K, Chem. Phys. Lett., 115, 60–64, 1985.
Библиографическая ссылка Moore, C. B., Vibration‐vibration energy transfer, Advances in Chemical PhysicsI.Prigogine, S. A.Rice, 23, 41–83, John Wiley, New York, 1973.
Библиографическая ссылка Murphy, A. K., Satellite measurements of atmospheric trace gases, D. Philos. thesis,Univ. of Oxford,Oxford,1985.
Библиографическая ссылка Nier, A. O., M. B.McElroy, Composition and structure of Mars' upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82, 4341–4349, 1977.
Библиографическая ссылка Ogibalov, V. P., A. A.Kutepov, An approximate solution for radiative transfer in the 4.3 μm CO<sub>2</sub> band: Thick atmosphere with breakdown of rotational LTE, Sov. Astron., 33, 260–264, 1989.
Библиографическая ссылка Orr, B. J., I. W. M.Smith, Collision‐induced vibrational energy transfer in small polyatomic molecules, J. Phys. Chem., 91, 6106–6119, 1987.
Библиографическая ссылка Pollock, D. S., G. B. I.Scott, L. F.Phillips, Rate constant for quenching of CO<sub>2</sub>(010) by atomic oxygen, Geophys. Res. Lett., 20, 727–729, 1993.
Библиографическая ссылка Ramanathan, V., R. D.Cess, Radiative transfer within the mesospheres of Venus and Mars, Astrophys. J., 188, 407–416, 1974.
Библиографическая ссылка Rodrigo, R., E.García‐Alvarez, M. J.López‐González, J. J.López‐Moreno, A non‐steady one‐dimensional theoretical model of Mars neutral atmospheric composition between 30 and 200 km, J. Geophys. Res., 95, 14795–14810, 1990.
Библиографическая ссылка Rothman, L. S., et al., The HITRAN database: 1986 edition, Appl. Opt., 26, 4058–4097, 1987.
Библиографическая ссылка Sharma, R. D., P. P.Wintersteiner, Role of carbon dioxide in cooling planetary atmospheres, Geophys. Res. Lett., 17, 2201–2204, 1990.
Библиографическая ссылка Shved, G. M., G. I.Stepanova, A. A.Kutepov, Transfer of 4.3 μm CO<sub>2</sub>. radiation on departure from local thermodynamic equilibrium in the atmosphere of the Earth, Atmos. Oceanic Phys., 14, 589–596, 1978.
Библиографическая ссылка Shved, G. M., L. E.Khvorostovskaya, I.Yu Potekhin, A. L.Demyanikov, A. A.Kutepov, V. I.Fomichev, Measurement of the quenching rate constant for collisions CO<sub>2</sub>(0,1<sup>1</sup>,0)‐O: The importance of the rate constant magnitude for the thermal regime and radiation of the lower thermosphere, Atmos. Oceanic Phys., 27, 1991.
Библиографическая ссылка Starr, D. F., J. K.Hancock, Vibrational energy transfer in CO<sub>2</sub>‐CO mixtures from 163 to 406 K, J. Chem. Phys., 63, 4730–4734, 1975.
Библиографическая ссылка Stepanova, G. I., G. M.Shved, Radiation transfer in the 4.3 μm CO<sub>2</sub> band and the 4.7 μm CO band in the atmospheres of Venus and Mars with violation of LTE: Populations of vibrational states, Sov. Astron., 29, 422–428, 1985.
Библиографическая ссылка Taine, J., F.Lepoutre, Determination of energy transferred to rotation‐translation in deactivation of CO<sub>2</sub> (00°1) by N<sub>2</sub> and O<sub>2</sub> and of CO(l) by CO<sub>2</sub>, Chem. Phys. Lett., 75, 448–451, 1980.
Библиографическая ссылка Taine, J., F.Lepoutre, G.Louis, A photoacoustic study of the collisional deactivation of CO<sub>2</sub> by N<sub>2</sub>, CO and O<sub>2</sub> between 160 and 375 K, Chem. Phys. Lett., 48, 611–615, 1978.
Библиографическая ссылка Thekaekara, M. P., Solar radiation measurements: Techniques and instrumentation, Solar Energy, 18, 309–325, 1976.
Библиографическая ссылка Wang, P.‐H., A.Deepak, S.‐S.Hong, General formulation of optical paths for large zenith angles in the Earth's curved atmosphere, J. Atmos. Sci., 38, 650–658, 1981.

Скрыть метаданые