Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Lopèz‐Valverde, M. A.
Автор Lopèz‐Puertas, M.
Дата выпуска 1994
dc.description A non‐local thermodynamic equilibrium (LTE) radiative transfer model has been applied to study the CO<sub>2</sub> and CO emissions in the infrared (1–20 μm) in the atmosphere of Mars during daytime conditions. An extensive set of vibrational‐translational (V‐T) and vibrational‐vibrational (V‐V) collisional exchanges among the vibrational levels responsible for these emissions has been considered. Radiative transfer has been included for most of the transitions and its importance illustrated for some of them. The populations of the most important vibrational levels of GO and of the ν<sub>2</sub> and ν<sub>3</sub> modes of CO<sub>2</sub> are presented. The CO<sub>2</sub>(0,ν<sub>2</sub>,0) levels follow LTE up to about 80 km at daytime, some 5 km lower than at nighttime conditions. The absorption of solar radiation at 1.6, 2.0, and 2.7 μm, and subsequent relaxation by V‐V and radiative processes, significantly populates these levels in the lower thermosphere, increasing all their vibrational temperatures with respect to nighttime conditions. Solar excitation and radiative transfer in 4.3 μm constitute the main sources of excitation of the (0,0°,1) level in the thermosphere, where this level shows a very large vibrational temperature. The V‐V transfer from highly excited CO<sub>2</sub> levels is even larger than the direct radiative excitation of the (0,0°,1) level in the mesosphere. The model predicts that the known inversion population between this vibrational level and the lower (0,2°,0) and (1,0°,0) levels will occur in the high mesosphere and above. The CO(1) level also shows much larger populations than during nighttime conditions, due to direct solar absorption at 4.7 μm and the role played by radiative transfer. A sensitivity study of the effect of current uncertainties in rate constants on the level populations is also presented. The uncertainties in the rate for ν<sub>3</sub> quanta exchange among CO<sub>2</sub> levels have significant effects on the deactivation of high energy states, leading to changes of importance in the daytime populations of the 2.7‐μm states in the mesosphere and in the (0,0°,1) level in the lower thermosphere.
Формат application.pdf
Копирайт Copyright 1994 by the American Geophysical Union.
Тема ATMOSPHERIC COMPOSITION AND STRUCTURE
Тема Radiation: transmission and scattering
Тема Middle atmosphere: composition and chemistry
Тема ATMOSPHERIC PROCESSES
Тема Meteorology and Atmospheric Dynamics: Radiative processes
Тема PLANETARY SCIENCES: SOLID SURFACE PLANETS
Тема Planetology: Solid Surface Planets and Satellites: Atmospheric composition and chemistry
Название A non‐local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars: 2. Daytime populations of vibrational levels
Тип article
DOI 10.1029/94JE01091
Electronic ISSN 2156-2202
Print ISSN 0148-0227
Журнал Journal of Geophysical Research: Planets
Том 99
Первая страница 13117
Последняя страница 13132
Выпуск E6
Библиографическая ссылка Bittner, H., K. H.Fricke, Dayside temperatures of the Martian upper atmosphere, J. Geophys. Res., 92, 12045–12055, 1987.
Библиографическая ссылка Bougher, S. W., R. E.Dickinson, Mars mesosphere and thermosphere, 1, Global mean heat budget and thermal structure, J. Geophys. Res., 93, 7325–7337, 1988.
Библиографическая ссылка Deming, D., M. J.Mumma, Modeling of the 10 μm natural laser emission from the mesospheres of Mars and Venus, Icarus, 55, 356–368, 1983.
Библиографическая ссылка Deming, D., F.Espenak, D.Jennings, T.Kostiuk, M. J.Mumma, D.Zipoy, Observations of the 10 μm natural laser emission from the mesospheres of Mars and Venus, Icarus, 55, 347–355, 1983.
Библиографическая ссылка Farmer, C. B., R. H.Norton, A high‐resolution atlas of the infrared spectrum of the Sun and the Earth's atmosphere from space, II, NASA Ref. Publ., 1224, 1989.
Библиографическая ссылка Fox, J. L., A.Dalgarno, Ionization, luminosity and heating of the upper atmosphere of Mars, J. Geophys. Res., 84, 7315–7333, 1979.
Библиографическая ссылка Gordiets, B. F., V. Ya.Panchenko, Nonequilibrium infrared radiation and the natural laser effect in the atmospheres of Venus and Mars, Cosmic Res., 21, 725–734, 1983.
Библиографическая ссылка Johnson, M. A., A. L.Betz, R. A.Mclaren, E. C.Sutton, C. H.Townes, Non‐thermal 10 microns CO<sub>2</sub> emission lines in the atmospheres of Mars and Venus, Astrophys. J., 208, L145–L148, 1976.
Библиографическая ссылка López‐Puertas, M., M. A.López‐Valverde, F. W.Taylor, Vibrational temperatures and radiative cooling of the CO<sub>2</sub> 15 μm bands in the middle atmosphere, Q. J. R. Meteorol. Soc., 118, 499–532, 1992.
Библиографическая ссылка López‐Valverde, M. A., andM.López‐Puertas, A non‐local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars, 1, Theoretical basis and nighttime populations of vibrational levels.J. Geophys. Res., 99(E6), 1994.
Библиографическая ссылка Mumma, M. J., D.Buhl, G.Chin, D.Deming, F.Espenak, T.Kostiuk, D.Zipoy, Discovery of natural gain amplification in the 10 μm CO<sub>2</sub> laser bands on Mars: A natural laser, Science, 212, 45–49, 1981.
Библиографическая ссылка Rodrigo, R., E.García‐Alvarez, M. J.López‐González, J. J.López‐Moreno, A non‐steady one‐dimensional theoretical model of Mars neutral atmospheric composition between 30 and 200 km, J. Geophys. Res., 95, 14795–14810, 1990.
Библиографическая ссылка Rothman, L. S., et al., The HITRAN database: 1986 edition, Appl. Opt., 26, 4058–4097, 1987.
Библиографическая ссылка Stepanova, G. I., G. M.Shved, Radiation transfer in the 4.3 μm CO<sub>2</sub> band and the 4.7 μm CO band in the atmospheres of Venus and Mars with violation of LTE: Populations of vibrational states, Sov. Astron., 29, 422–428, 1985.

Скрыть метаданые