Автор |
Clancy, R. T. |
Автор |
Lee, S. W. |
Автор |
Gladstone, G. R. |
Автор |
McMillan, W. W. |
Автор |
Rousch, T. |
Дата выпуска |
1995 |
dc.description |
We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r<sub>eff</sub>variance ∼ 0.8 μm), smaller particle size (r<sub>mode</sub> ∼ 0.02 μm) distribution coupled with a “palagonite‐like” composition is argued to fit the complete ultraviolet‐to‐30‐μm absorption properties of the dust better than the montmorillonite‐basalt, r<sub>eff</sub>variance = 0.4 μm, r<sub>mode</sub> = 0.40 dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971–1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample (Roush et al., 1991) with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission‐phase‐function (EPF) observations at 9 μm are analyzed to retrieve 9‐μm dust opacities coincident with solar band dust opacities obtained from the same EPF sequences (Clancy and Lee, 1991). These EPF dust opacities provide an independent measurement of the visible/9‐μm extinction opacity ratio (≥2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9‐μm opacity ratio and the ultraviolet and visible single‐scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9‐μm absorption well. However, it predicts structured, deep absorptions at 20 μm which are not observed and requires a separate ultraviolet‐visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8‐ to 9‐μm absorption presented by the dust in the IRIS spectra, probably due to its low SiO<sub>2</sub> content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9‐ to 12‐μm absorption, and a lack of structured absorption at 20 μm. The ratios of dust extinction opacities at visible, 9 μm, and 30 μm are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r<sub>mode</sub> = 0.40, r<sub>eff</sub>variance = 0.4 μm, r<sub>cwμ</sub> = 2.7 μm) predicts the correct ratio of the 9‐ to 30‐μm opacity, but underpredicts the visible/9‐μm opacity ratio considerably (1 versus ≥2). A similar particle distribution width with smaller particle sizes (r<sub>mode</sub> = 0.17, r<sub>eff</sub>variance = 0.4 μm, r<sub>cwμ</sub> = 1.2 μm) will fit the observed visible/9‐μm opacity ratio, but overpredicts the observed 9‐μm/30‐μm opacity ratio. A smaller and much broader particle size distribution (r<sub>mode</sub> = 0.02, r<sub>eff</sub>variance = 0.8 μm, r<sub>cwμ</sub> = 1.8 μm) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9‐μm dust opacity ratio, the Phobos occultation measurements of dust particle sizes (Chassefiere et al., 1992), and the weakness of surface near IR absorptions expected for clay minerals (Clark, 1992; Bell and Crisp, 1993). |
Формат |
application.pdf |
Копирайт |
Copyright 1995 by the American Geophysical Union. |
Тема |
Martian Surface and Atmosphere Through Time |
Тема |
PLANETARY SCIENCES: SOLID SURFACE PLANETS |
Тема |
Planetology: Solid Surface Planets: Atmospheres—composition and chemistry |
Название |
A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos |
Тип |
article |
DOI |
10.1029/94JE01885 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Planets |
Том |
100 |
Первая страница |
5251 |
Последняя страница |
5263 |
Выпуск |
E3 |
Библиографическая ссылка |
Banin, A., B. C.Clark, H.Wänke, Surface chemistry and mineralogy, MarsH.Kieffer, B.Jakosky, C.Snyder, M.Matthews, 595–625, University of Arizona Press, Tucson, 1992. |
Библиографическая ссылка |
Bell, J., D.Crisp, Groundbased imaging spectroscopy of Mars in the near‐infrared: Preliminary results, Icarus, 104, 2–19, 1993. |
Библиографическая ссылка |
BellIII, J. F., R. V.Morris, J. B.Adams, Thermally altered palagonitic tephra: A spectral and process analog to the soils and dust of Mars, J. Geophys. Res., 98, 3373–3385, 1993. |
Библиографическая ссылка |
Bishop, J., S.Murchie, S.Pratt, J.Mustard, C.Pieters, The importance of environmental conditions in reflectance spectroscopy of laboratory analogs for Mars surface materials, LPI Tech. Rep., 93‐06, 4–6, 1993. |
Библиографическая ссылка |
Burns, R., Rates and mechanism of chemical weathering of ferromagnesian silicate minerals on Mars, Geochim. Cosmochim. Acta, 57, 4555–4579, 1993. |
Библиографическая ссылка |
Chassefiere, E., J. E.Blamont, V. A.Krasnopolsky, O. I.Korablev, S. K.Atreya, R. A.West, Vertical structure and size distributions of Martian aerosols from solar occultation measurements, Icarus, 97, 46–69, 1992. |
Библиографическая ссылка |
Christensen, P. R., Martian dust mantling and surface composition: Interpretation of thermophysical properties, J. Geophys. Res., 87, 9985–9998, 1982. |
Библиографическая ссылка |
Christensen, P. R., The spatial distribution of rocks on Mars, Icarus, 68, 217–238, 1986. |
Библиографическая ссылка |
Clancy, R. T., S. W.Lee, A new look at dust and clouds in the Mars atmosphere: Analysis of emission‐phase‐function sequences from global Viking IRTM observations, Icarus, 93, 135–158, 1991. |
Библиографическая ссылка |
Clark, B. C., A. K.Baird, R. J.Weldon, D. M.Tsusaki, L.Schnabel, M. P.Candelaria, Chemical composition of Martian fines, J. Geophys. Res., 87, 10059–10067, 1982. |
Библиографическая ссылка |
Clark, R. N., Mars: Limits on mineralogy from reflectance spectroscopy, Bull. Am. Astron. Soc., 24, 986, 1992. |
Библиографическая ссылка |
Clark, R. N., T. L.Roush, Reflectance spectroscopy: Quantitative analysis techniques for remote sensing, J. Geophys. Res., 89, 6329–6340, 1984. |
Библиографическая ссылка |
Clark, R. N., G. A.Swayze, R. B.Singer, J. B.Pollack, High resolution reflectance spectra of Mars in the 2.3‐1μm region: Evidence for the mineral scapolite, J. Geophys. Res., 95, 14463–14480, 1990. |
Библиографическая ссылка |
Evans, D. L., T. G.Farr, J. B.Adams, Spectral reflectance of weathered terrestrial and martian surfaces, Proc. Lunar. Planet. Sci. Conf. 12th, 1473–1479, 1981. |
Библиографическая ссылка |
Gladstone, G. R., J. W.Kaminski, R.Link, andJ. C.McConnell, Cloud radiance modeling: Phase II, contract KM147‐4‐1041,Can. Dept. of the Environ.,Ottawa, Ontario,1984. |
Библиографическая ссылка |
Golden, D. C., R. V.Morris, D. W.Ming, H. V.LauerJr., S. R.Yang, Mineralogy of three slightly palagonitized basaltic tephra samples from the summit of Mauna Kea Hawaii, J. Geophys. Res., 98, 3401–3411, 1993. |
Библиографическая ссылка |
Greeley, R., R. N.Leach, B. R.White, J. D.Iversen, J. B.Pollack, Threshold wind speeds for sand on Mars: Wind tunnel simulations, Geophys. Res. Lett., 7, 121–124, 1980. |
Библиографическая ссылка |
Haberle, R. M., B. J.Jakosky, Atmospheric effects on the remote determination of thermal inertia on Mars, Icarus, 90, 187–204, 1991. |
Библиографическая ссылка |
Hanel, R., et al., Investigation of the Martian environment by infrared spectroscopy on Mariner 9, Icarus, 17, 423–442, 1972. |
Библиографическая ссылка |
Hansen, J. E., L. D.Travis, Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, 1974. |
Библиографическая ссылка |
Hapke, B., Theory of reflectance and emittance spectroscopy, 455, Cambridge University. Press, New York., 1993. |
Библиографическая ссылка |
Hunt, G. E., Thermal infrared properties of the Martian atmosphere, 4, Predictions of the presence of dust and ice clouds from Viking IRTM spectral measurements, J. Geophys. Res., 84, 2865–2874, 1979. |
Библиографическая ссылка |
Hunt, G. E., L. M.Logan, J. W.Salisbury, Mars: Components of infrared spectra and the composition of the dust cloud, Icarus, 18, 459–469, 1973. |
Библиографическая ссылка |
Krasnopolsky, V. A., V. I.Moroz, A. A.Krysko, O. I.Korablev, V. S.Zhegulev, A. V.Grigoriev, A. Yu.Tkachuk, V. A.Parshev, J. E.Blamont, J. P.Goutail, Solar occultation sounding of the Martian atmosphere by the Phobos spacecraft, Nature, 341, 603–604, 1989. |
Библиографическая ссылка |
Martin, T. Z., Thermal infrared opacity of the Mars atmosphere, Icarus, 66, 2–21, 1986. |
Библиографическая ссылка |
McMillan, W. W., J. C.Pearl, B. J.Conrath, Mariner 9 revisited: Mars Observer or bust, Bull. Am. Astron. Soc., 25, 1061, 1993. |
Библиографическая ссылка |
Mitchell, D. L., W. P.Amott, A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part I. Microphysics, J. Atmos. Sci., 51, 817–832, 1994. |
Библиографическая ссылка |
Morris, R. V., J. L.Gooding, H. V.LauerJr., R. B.Singer, Origins of the Mars‐like spectral and magnetic properties of a Hawaiian palagonitic soil, J. Geophys. Res., 95, 14427–14435, 1990. |
Библиографическая ссылка |
Murchie, S., J.Mustard, J.Bishop, J.Head, C.Pieters, S.Erard, Spatial variations in the spectral properties of bright regions on Mars, Icarus, 105, 454–468, 1993. |
Библиографическая ссылка |
Murphy, J. R., et al., Martian global dust storms: Zonally symmetric numerical simulations including size dependent particle transport, J. Geophys. Res., 98, 3197–3220, 1993. |
Библиографическая ссылка |
Orenberg, J., J.Handy, Reflectance spectroscopy of palagonite and iron‐rich montmorillonite clay mixtures: Implications for the surface composition of Mars, Icarus, 96, 219–225, 1992. |
Библиографическая ссылка |
Pang, K., J. M.Ajello, Complex refractive index of Martian dust: Wavelength dependence and composition, Icarus, 30, 63–74, 1977. |
Библиографическая ссылка |
Pang, K., C. W.Hord, Mariner 9 ultraviolet spectrometer experiment: 1971 Mars' dust storm, Icarus, 18, 481–488, 1973. |
Библиографическая ссылка |
Pollack, J., D.Colbum, R.Kahn, J.Hunter, W.Van Camp, C.Carlston, M.Wolfe, Properties of aerosols in the Mars atmosphere, as inferred from Viking Lander imaging data, J. Geophys. Res., 82, 4479–4496, 1977. |
Библиографическая ссылка |
Pollack, J., D.Colburn, F. M.Flasar, R.Kahn, C.Carlston, D.Pidek, Properties and effects of dust particles suspended in the Martian atmosphere, J. Geophys. Res., 84, 2929–2945, 1979. |
Библиографическая ссылка |
Pollack, J., M. E.Ockert‐Bell, andM. K.Shepard, Viking Lander image analysis of Martian atmospheric dust,J. Geophys. Res., 100(E3), 1995. |
Библиографическая ссылка |
Roush, T. L., Characterization of the spectral reflectance of mafic silicates, hydrated silicates, and hydrated silicate‐water ice mixtures in the 0.6 to 4.5 μm wavelength region and applications to planetary science, Ph.D. dissertation,, 130 pp.,Univ. of Hawaii,Honolulu,1987. |
Библиографическая ссылка |
Roush, T. L., Infrared optical properties of Mars soil analog materials: Palagonites,LPI Tech. Rep. 92‐04, Part I,32–33,1992. |
Библиографическая ссылка |
Roush, T. L., andD.Blake, Characterization of Mauna Kea palagonite using transmission electron microscopy,Lunar Planet. Sci. Conf.XXII, (abstract), Houston,1139–1140,1991. |
Библиографическая ссылка |
Roush, T., J.Pollack, J.Orenberg, Derivation of midinfrared (5–25 μm) optical constants of some silicates and palagonite, Icarus, 94, 191–208, 1991. |
Библиографическая ссылка |
Roush, T. L., D. L.Blaney, R. B.Singer, The surface composition of Mars as inferred from spectroscopic observations, Remote Geochemical Analysis: Elemental and Mineralogical CompositionC.Pieters, P.Englert, 367–394, Cambridge University Press, New York, 1993. |
Библиографическая ссылка |
Singer, R., Spectral evidence for the mineralogy of high albedo soils and dust on Mars, J. Geophys. Res., 87, 10159–10168, 1982. |
Библиографическая ссылка |
Soderblom, L. A., The composition and mineralogy of the Martian surface from spectroscopic observations: 0.3 μm to 50 μm, MarsH.Kieffer, B.Jakosky, C.Snyder, M.Matthews, 557–593, University of Arizona Press, Tucson, 1992. |
Библиографическая ссылка |
Soderblom, L. A., K.Edwards, E. M.Eliason, E. M.Sanchez, M. P.Charette, Global color variations on the Martian surface, Icarus, 34, 446–464, 1978. |
Библиографическая ссылка |
Toon, O. B., J. B.Pollack, C.Sagan, Physical properties of the particles composing the Martian dust storm of 1971–1972, Icarus, 30, 663–696, 1977. |
Библиографическая ссылка |
West, R. A., G. S.Orton, B. T.Draine, E. A.Hubbell, Infrared absorption features for tetrahedral ammonia ice crystals, Icarus, 80, 220–223, 1989. |
Библиографическая ссылка |
Zurek, R. W., Martian great dust storms: An update, Icarus, 50, 288–310, 1982. |