Автор |
Yu, Ka Chun |
Автор |
Bally, John |
Дата выпуска |
1996 |
dc.description |
We show that extrasolar planets in orbit around nearby stars can be detected from the ground or from a stratospheric telescope in the infrared region of the spectrum. We present calculations on the detectability of extrasolar planets, using Erich Grossman's Atmospheric Transmission (AT) code to compute atmospheric transmission at bands centered at 11 μm, 20 μm, 27 μm, 200 μm, 225 μm, 350 μm, 450 μm, 640 μm, 750 μm, and 870 μm. Detection limits for terrestrial and Jovian planets orbiting Sun‐like stars are presented by assuming Planck emission. We consider several potential sites including the south pole, a 5000‐m elevation site in the Atacama Desert in Chile, Mauna Kea in Hawaii, and an aerostat‐borne telescope flown near the poles. We consider extrasolar planet detection with a 10‐m class mid‐IR telescope and a dilute aperture stratospheric telescope consisting of 4‐m mirrors optimized for this task. Detection in the submillimeter, even with a 10<sup>4</sup> m<sup>2</sup> collecting area array is extremely difficult because of low atmospheric transparency, and the decrease (∝ λ<sup>−2</sup>) in planet emission with increasing wavelength in the Rayleigh‐Jeans limit. We discuss critical technologies needed for this undertaking, including tethered aerostats and balloon‐borne telescopes, the development of mid‐IR nulling interferometry, actively cooled optics operating in the atmosphere, and optimized filters that are matched to the atmospheric transmission windows. |
Формат |
application.pdf |
Копирайт |
Copyright 1996 by the American Geophysical Union. |
Тема |
Detection of Extrasolar Planets |
Тема |
ATMOSPHERIC COMPOSITION AND STRUCTURE |
Тема |
Radiation: transmission and scattering |
Тема |
GENERAL OR MISCELLANEOUS |
Тема |
General or Miscellaneous: New fields (not classifiable under other headings) |
Название |
Extrasolar planet detection at infrared wavelengths from the Earth |
Тип |
article |
DOI |
10.1029/96JE00498 |
Electronic ISSN |
2156-2202 |
Print ISSN |
0148-0227 |
Журнал |
Journal of Geophysical Research: Planets |
Том |
101 |
Первая страница |
14843 |
Последняя страница |
14851 |
Выпуск |
E6 |
Библиографическая ссылка |
Alcock, C., et al., Experimental limits on the dark matter halo of the Galaxy from gravitational microlensing, Phys. Rev. Lett., 74, 2867–2871, 1995a. |
Библиографическая ссылка |
Alcock, C., et al., Probable gravitational microlensing toward the Galactic bulge, Astrophys. J., 445, 133–139, 1995b. |
Библиографическая ссылка |
Bally, J., Atmospheric transparency over Antarctica from the mid‐infrared to centimeter wavelengths, Astrophysics in Antarctica, AIP Conference Proceedings, 198D. J.Mullan, M. A.Pomerantz, T.Stanev, 100–105, Am. Inst. of Phys., College Park, Md., 1989. |
Библиографическая ссылка |
Bracewell, R. N., Detecting nonsolar planets by spinning infrared interferometer, Nature, 274, 780–781, 1978. |
Библиографическая ссылка |
Bracewell, R. N., R. H.MacPhie, Searching for nonsolar planets, Icarus, 38, 136–147, 1979. |
Библиографическая ссылка |
Burch, D. E., D. A.Gryvnak, Continuum absorption by H<sub>2</sub>O vapor in the infrared and millimeter regions, Atmospheric Water VaporA.Deepak, T. T.Wilkerson, L. H.Ruhnke, 47–75, Academic, San Diego, Calif., 1980. |
Библиографическая ссылка |
Burova, L. P., V. D.Gromov, N. I.Lukianchikova, G. B.Sholomitskii, Low humidity and submillimeter transparency above the Vostok Antarctic station, Sov. Astron. Lett., 12, 339–341, 1986. |
Библиографическая ссылка |
Chamberlin, R. A., J.Bally, The 225‐GHz opacity of the South Pole sky derived from continual radiometric measurements of the sky brightness temperature, Appl. Opt., 33, 1095–1099, 1994. |
Библиографическая ссылка |
Chamberlin, R. A., J.Bally, The observed relationship between the South Pole 225‐GHz atmospheric opacity and water vapor column density, Int. J. Infrared Millimeter Waves, 1996. |
Библиографическая ссылка |
Davis, G. R., The far infrared continuum absorption of water vapour, J. Quant. Spectrosc. Radiat. Transfer, 50, 673–694, 1993. |
Библиографическая ссылка |
, Atmospheric Water VaporA.Deepak, T. T.Wilkerson, L. H.Ruhnke, 695, Academic, San Diego, Calif., 1980. |
Библиографическая ссылка |
Dopita, M., H.Ford, J.Bally, P.Bely, POST: A Polar Stratospheric Telescope for Antarctica, Proc. Astron. Soc. Aust., 1996. |
Библиографическая ссылка |
Eckart, A., R.Genzel, R.Hofmann, B. J.Sams, L. E.Tacconi‐Garman, High angular resolution spectroscopic and polarimetric imaging of the Galactic center in the near‐infrared, Astrophys. J. Lett., 445, L23–L26, 1995. |
Библиографическая ссылка |
Ford, H., et al., POST: a Polar Stratospheric Telescope, Proc. SPIE Int. Soc. Opt. Eng., 2199, 298–314, 1994. |
Библиографическая ссылка |
Goody, R. M., Atmospheric Radiation, 1, 236–243, Clarendon, Oxford, 1964. |
Библиографическая ссылка |
Grossman, E., AT — Atmospheric Transmission Software User's Manual, Univ. of Texas and Airhead Software Co., Austin, 1989. |
Библиографическая ссылка |
Harper, D. A., Infrared astronomy in Antarctica, Astrophysics in Antarctica, AIP Conference Proceedings, 198D. J.Mullan, M. A.Pomerantz, T.Stanev, 123–129, Am. Inst. of Phys., New York, 1989. |
Библиографическая ссылка |
Liebe, H. J., MPM—An atmospheric millimeter‐wave propagation model, Int. J. Infrared Millimeter Waves, 10, 631–650, 1989. |
Библиографическая ссылка |
Liebe, H. J., D. A.Layton, Millimeter‐wave properties of the atmosphereNTIA Rep. 87‐224U.S. Dep. of Commer., Boulder, Colo., 1987. |
Библиографическая ссылка |
Mankin, W. G., J. A.Eddy, R. M.MacQueen, R. H.Lee, C. W.Querfeld, Observations of far infrared atmospheric windows at 44 cm<sup>−1</sup> and 50 cm<sup>−1</sup> from Pikes Peak, Nat. Phys. Sci., 245, 8–9, 1973. |
Библиографическая ссылка |
Mao, S., B.Paczyński, Gravitational microlensing by double stars and planetary systems, Astrophys. J. Lett., 374, L37–L40, 1991. |
Библиографическая ссылка |
Mayor, M., D.Queloz, A Jupiter‐mass companion to a solar‐type star, Nature, 378, 355–359, 1995. |
Библиографическая ссылка |
Nastrom, G. D., K. S.Gage, B. B.Balsley, Variability of C<sup>2</sup><sub>n</sub> at Poker Flat, Alaska, from mesosphere, stratosphere, troposphere (MST) Doppler radar observations, Opt. Eng., 21, 347–351, 1982. |
Библиографическая ссылка |
Nastrom, G. D., K. S.Gage, W. L.Ecklund, Variability of turbulence, 4–20 km, in Colorado and Alaska from MST radar observations, J. Geophys. Res., 91, 6722–6734, 1986. |
Библиографическая ссылка |
Rothman, L. S., R. R.Gamache, A.Barbe, A.Goldman, J. R.Gillis, L. R.Brown, R. A.Toth, J.‐M.Flaud, C.Camy‐Peyret, AFGL atmospheric absorption line parameters compilation: 1982 edition, Appl. Opt., 22, 2247–2256, 1983. |
Библиографическая ссылка |
Schneider, P., J.Ehlers, E. E.Falco, Gravitational Lenses, 560, Springer‐Verlag, New York, 1993. |
Библиографическая ссылка |
Shao, M., M. M.Colavita, Long‐baseline optical and infrared stellar interferometry, Ann. Rev. Astron. Astrophys., 30, 457–98, 1992. |
Библиографическая ссылка |
Smythe, W. D., B. V.Jackson, Atmospheric water vapor at the South Pole, Appl. Opt., 16, 2041–2042, 1977. |
Библиографическая ссылка |
Thomas, M. E., Infrared‐ and millimeter‐wavelength continuum absorption in the atmospheric windows: Measurements and models, Infrared Phys., 30, 161–174, 1990. |
Библиографическая ссылка |
Traub, W. A., M. T.Stier, Theoretical atmospheric transmission in the mid‐ and far‐infrared at four altitudes, Appl. Opt., 15, 364–377, 1976. |
Библиографическая ссылка |
Udalski, A., M.Szymanski, K. Z.Stanek, J.Kaluzny, M.Kubiak, M.Mateo, W.Krzeminski, B.Paczyński, R.Venkat, The optical gravitational lensing experiment, Acta Astron., 44, 165–189, 1994. |
Библиографическая ссылка |
Whiting, E. E., An empirical approximation to the Voigt profile, J. Quant. Spectrosc. Radiat. Transfer, 8, 1379–1384, 1968. |