Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Birchfield, G. Edward
Автор Wang, Huaxiao
Автор Wyant, Matthew
Дата выпуска 1990
dc.description The importance of the hydrological cycle as a controlling factor on the magnitude of the thermohaline circulation is illustrated in a simple one‐hemisphere coupled ocean‐atmosphere box model. The ocean model includes differential surface heating and evaporation, horizontal and vertical exchange of heat and salt between boxes, and a simply parameterized thermohaline circulation. Surface heat fluxes and evaporation are determined through the coupled ocean and energy balance atmosphere models which treat fluxes of long‐ and short‐wave radiation and sensible and latent heat. Two parameters represent the most important physics: µ controls the magnitude of the thermohaline circulation; ε controls the strength of the hydrological cycle. For fixed µ, two regimes are distinguished. One, associated with small values of ε, has weak latitudinal water vapor transport in the atmosphere, a strong thermohaline circulation with sinking in high latitudes, upwelling in low latitudes, and strong latitudinal transport of heat by the ocean. The second regime for larger ε is characterized by strong latitudinal water vapor transport which, by reducing the surface salinity in high latitudes, shuts down the thermohaline circulation and has reduced ocean and net latitudinal heat transport. The bimodal response in the model is shown to be the consequence of a shift in the mechanism of supply of salt to the high‐latitude surface ocean from predominantly thermohaline transport, a nonlinear process, to or from predominantly eddy mixing transport, a linear process. In climatological terms, the bimodality represents two distinct climate regimes, one with an active ocean meridional circulation and relatively warm ocean and atmosphere temperatures in high latitudes, and the other with a less active ocean circulation and an increased latitudinal temperature gradient in atmosphere and ocean. The regime with an active thermohaline circulation tends to be less stable than the other, exhibiting over a range of ε a “halocline catastrophe” to perturbations in surface salinity. In many respects the model supports current concepts concerning the role of bimodal ocean physics and atmospheric water vapor transport in glacial to interglacial climate changes and in the more rapid events such as the Younger Dryas.
Формат application.pdf
Копирайт Copyright 1990 by the American Geophysical Union.
Тема Paleo‐Ocean Modeling
Тема ATMOSPHERIC PROCESSES
Тема Paleoclimatology
Тема Ocean/atmosphere interactions
Тема OCEANOGRAPHY: GENERAL
Тема 4267
Название A bimodal climate response controlled by water vapor transport in a coupled ocean‐atmosphere box model
Тип article
DOI 10.1029/PA005i003p00383
Electronic ISSN 1944-9186
Print ISSN 0883-8305
Журнал Paleoceanography
Том 5
Первая страница 383
Последняя страница 395
Выпуск 3
Библиографическая ссылка Baumgartner, A., E.Reichel, The World Water Balance, 179, Oldenbourg, Munich, 1975.
Библиографическая ссылка Birchfield, G. E., A coupled ocean‐atmosphere climate model: Temperature versus salinity effects on the thermohaline circulation, Clim. Dyn., 4, 57–71, 1989.
Библиографическая ссылка Birchfield, G. E., J.Weertman, A. T.Lunde, A model study of the role of high‐latitude topography in the climatic response to orbital insolation anomalies, J. Atmos. Sci., 39, 71–87, 1982.
Библиографическая ссылка Boyle, E. A., L.Keigwin, North Atlantic thermohaline circulation during the past 20,000 years linked to high‐latitude surface temperature, Nature, 330, 35–40, 1987.
Библиографическая ссылка Broecker, W. S., Unpleasant surprises in the greenhouse?, Nature, 328, 123–126, 1987.
Библиографическая ссылка Broecker, W. S., The salinity contrast between the Atlantic and Pacific oceans during glacial time, Paleoceanography, 4, 207–212, 1989a.
Библиографическая ссылка Broecker, W. S., Some thoughts about the radiocarbon budget for the glacial Atlantic, Paleoceanography, 4, 213–220, 1989b.
Библиографическая ссылка Broecker, W. S., G. H.Denton, The role of oceanatmosphere reorganizations in glacial cycles, Geochim. Cosmochim. Acta, 53, 2465–2501, 1989.
Библиографическая ссылка Broecker, W. S., D. M.Peteet, D.Rind, Does the ocean‐atmosphere system have more than one stable mode of operation?, Nature, 315, 21–26, 1985.
Библиографическая ссылка Bryan, F., High‐latitude salinity effects and interhemispheric thermohaline circulatiions, Nature, 323, 301–304, 1986.
Библиографическая ссылка , AGUR. M.Cline, J. D.Hays, Investigation of late Quaternary paleoceanography and paleoclimatology, Mem. Geol. Soc. Am., 145, 464, 1976.
Библиографическая ссылка Dansgaard, W., S. J.Johnsen, H. B.Clausen, D.DahlJensen, N.Gundestrup, C. U.Hammer, H.Oeschger, North Atlantic climatic oscillations revealed by deep Greenland ice cores, Climate Processes and Climate Sensitivity, Geophys. Monogr. Ser., 29T.Hansen, T.Takahashi, 288–298, Washington, D.C., 1984.
Библиографическая ссылка Dansgaard, W., J.W.C.White, S. J.Johnsen, The abrupt termination of the Younger Dryas, Nature, 339, 532–534, 1989.
Библиографическая ссылка Duplessy, J. C., N. J.Shackleton, R. G.Fairbanks, Deepwater source variations during the last climatic cycle and their impact on the global deep‐water circulation, Paleoceanography, 3, 343–360, 1988.
Библиографическая ссылка Ghil, M., S.Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics, 485, Springer‐Verlag, New York, 1987.
Библиографическая ссылка Gordon, A. L., Interocean exchange of thermocline water, J. Geophys. Res., 91, 5037–5046, 1986.
Библиографическая ссылка Lorenz, E. N., The Nature and Theory of the General Circulation of the Atmosphere, 161, World Meteorological Organication, Geneva, 1967.
Библиографическая ссылка Manabe, S., R. J.Stouffer, Two stable equilibria of a coupled ocean‐atmosphere model, J. clim., 1, 841–866, 1988.
Библиографическая ссылка Morton, R. R., G.Taylor, J. S.Turner, Turbulent gravitational convection from maintained and instantaneous sources, J. FluidMech., 234, 1–23, 1956.
Библиографическая ссылка North, G. R., J. G.Mengel, D. A.Short, Simple energy balance model resolving the seasons and the continents: Application to the astronomical theory of the Ice Ages, J. Geophys. Res., 88, 6576–6586, 1983.
Библиографическая ссылка Oort, A. H., T. H.Yonder Haar, On the observed annual cycle in the ocean‐atmosphere heat balance over the northern hemisphere, J. Phys. Oceanogr., 6, 781–800, 1976.
Библиографическая ссылка Rind, D., D.Peteet, W. S.Broecker, A.Mclntyre, W. F.Ruddiman, The impact of cold North Atlantic sea surface temperatures on climate: Implications for the Younger Dryas cooling (11–10 K), Clim. Dyn., 1, 3–33, 1986.
Библиографическая ссылка Rooth, C., Hydrology and ocean circulation, Prog. Oceanogr., 11, 131–149, 1982.
Библиографическая ссылка Ruddiman, W. F., A.Mclntyre, Late Quaternary surface ocean kinematics and climatic change in the high‐latitude North Atlantic, J. Geophys. Res., 82, 2877–3887, 1977.
Библиографическая ссылка Stommel, H., Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–228, 1961.
Библиографическая ссылка Suarez, M., L. M.Held, The sensitivity of an energy balance climate model to variations in the orbital parameters, J. Geophys. Res., 84, 4825–4836, 1979.
Библиографическая ссылка Welander, P., Oscillations in a simple air‐water system driven by a stabilizing heat flux, Dyn. Atmos. Oceans, 5, 269–280, 1981.
Библиографическая ссылка Welander, P., A simple heat‐salt oscillator, Dyn. Atmos. Oceans, 6, 233–242, 1982.
Библиографическая ссылка Welander, P., Thermohaline effects in the ocean circulation and related simple models, Large‐Scale Transport Processes in Oceans and AtmosphereJ.Willebrand, D.L.T.Anderson, 163–200, D. Reidel, Hingham, Mass., 1986.
Библиографическая ссылка Weyl, P., The role of the oceans in climatic change: A theory of the ice ages, Meteorol. Monogr., 8, 37–62, American Meteorological Society, Washington, D.C., 1968.

Скрыть метаданые