Автор |
Brüggemann, Wolfgang |
Дата выпуска |
1992 |
dc.description |
The question of an optimal age‐depth relation for deep‐sea sediment cores has been raised frequently. The data from such cores (e.g., δ<sup>18</sup>O values) are used to test the astronomical theory of ice ages as established by Milankovitch in 1938. In this work, we use a minimal cost function approach to find simultaneously an optimal age‐depth relation and a linear model that optimally links solar insolation or other model input with global ice volume. Thus a general tool for the calibration of deep‐sea cores to arbitrary tuning targets is presented. In this inverse modeling type approach, an objective function is minimized that penalizes: (1) the deviation of the data from the theoretical linear model (whose transfer function can be computed analytically for a given age‐depth relation) and (2) the violation of a set of plausible assumptions about the model, the data and the obtained correction of a first guess age‐depth function. These assumptions have been suggested before but are now quantified and incorporated explicitly into the objective function as penalty terms. We formulate an optimization problem that is solved numerically by conjugate gradient type methods. Using this direct approach, we obtain high coherences in the Milankovitch frequency bands (over 90%). Not only the data time series but also the the derived correction to a first guess linear age‐depth function (and therefore the sedimentation rate) itself contains significant energy in a broad frequency band around 100 kyr. The use of a sedimentation rate which varies continuously on ice age time scales results in a shift of energy from 100 kyr in the original data spectrum to 41, 23, and 19 kyr in the spectrum of the corrected data. However, a large proportion of the data variance remains unexplained, particularly in the 100 kyr frequency band, where there is no significant input by orbital forcing. The presented method is applied to a real sediment core and to the SPECMAP stack, and results are compared with those obtained in earlier investigations. |
Формат |
application.pdf |
Копирайт |
Copyright 1992 by the American Geophysical Union. |
Тема |
ATMOSPHERIC PROCESSES |
Тема |
Paleoclimatology |
Тема |
OCEANOGRAPHY: GENERAL |
Тема |
4267 |
Тема |
Numerical modeling |
Тема |
Instruments and techniques |
Название |
A minimal cost function method for optimizing the age‐Depth relation of deep‐sea sediment cores |
Тип |
article |
DOI |
10.1029/92PA01235 |
Electronic ISSN |
1944-9186 |
Print ISSN |
0883-8305 |
Журнал |
Paleoceanography |
Том |
7 |
Первая страница |
467 |
Последняя страница |
487 |
Выпуск |
4 |
Библиографическая ссылка |
Berger, A. L., A simple algorithm to compute long term variations of daily or monthly insolation, Contrib., 18, 36, Inst. d'Astron. de Louvain, Lou vain, Belgium, 1978. |
Библиографическая ссылка |
Brüggemann, W., Optimierung der Alterstiefenzuordnimg von Tiefseebohrkernen, Diplomarbeit, 122, Univ. of Hamburg, Hamburg, Germany, 1990. |
Библиографическая ссылка |
Crowley, T. J., G. R.North, Paleoclimatology, 339, Oxford University Press, New York, 1991. |
Библиографическая ссылка |
Gill, P. E., W.Murray, Conjugate‐gradient methods for large‐scale nonlinear optimizationTech. Rep. SOL 79–15, 59, Syst. Optimization Lab., Dep. of Oper. Res., Stanford Univ., Stanford, Calif., 1979. |
Библиографическая ссылка |
Gill, P. E., W.Murray, M. H.Wright, Practical Optimization, 401, Academic, San Diego, Calif., 1981. |
Библиографическая ссылка |
Grieger, B., Orbital tuning of marine sedimentary cores: An automatic procedure based on a general linear modelRep. 79, 30, Max‐Planck‐Inst. für Meteorol., Hamburg, Germany, 1992. |
Библиографическая ссылка |
Hasselmann, K., K.Herterich, Application of inverse modelling techniques to palaeoclimatic data, Paleoclimatic Research and ModelsA.Ghazi, 52–68, D. Reidel, Hingham, Mass., 1983. |
Библиографическая ссылка |
Hays, J. D., J.Imbrie, N. J.Shackleton, Variations in the Earth's orbit: Pacemaker of the ice ages, Science, 194, 1121–1132, 1976. |
Библиографическая ссылка |
Herterich, K., Extracting the parameters of simple climate models by inverse modeling of the deepsea core climatic recordRep. 23, 23, Max‐Plan ck‐Inst. für Meteorol., Hamburg, Germany, 1988. |
Библиографическая ссылка |
Herterich, K., M.Sarnthein, Brunhes time scale: Tuning by rates of calcium‐carbonate dissolution and cross spectral analyses with solar insolation, Milankovitch and Climate. Part 1A. L.Berger, J.Imbrie, J. D.Hays, G.Kukla, B.Saltzman, 447–466, D. Reidel, Hingham, Mass., 1984. |
Библиографическая ссылка |
Hilgen, F. J., Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale, Earth Planet. Sci. Lett., 104, 226–244, 1991. |
Библиографическая ссылка |
Imbrie, J., J. Z.Imbrie, Modeling the climatic response to orbital variations, Science, 207, 943–953, 1980. |
Библиографическая ссылка |
Imbrie, J., J. D.Hays, D. G.Martinson, A.McIntyre, A. C.Mix, J. J.Morley, N. G.Pisias, W. L.Prell, N. J.Shackleton, The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ<sup>18</sup>0 record, Milankovitch and Climate, Part 1A. L.Berger, J.Imbrie, J. D.Hays, G.Kukla, B.Saltzman, 269–305, D. Reidel, Hingham, Mass., 1984. |
Библиографическая ссылка |
Imbrie, J., A.McIntyre, A.Mix, Oceanic response to orbital forcing in the late quaternary: Observational and experimental strategies, Climate and Geo–SciencesJ.‐C.Duplessy, A.Berger, S. H.Schneider, 121–164, D. Reidel, Hingham, Mass., 1989. |
Библиографическая ссылка |
Izett, G. A., J. D.Obradovich, Dating of the Matuyama–Brunhes Boundary Based on <sup>40</sup>Ar/<sup>39</sup>Ar Ages of the Bishop Tuff and Cerro San Luis RhyoliteAnnual MeetingGeol. Soc. of Am.San DiegoOct. 21–24, 1991. |
Библиографическая ссылка |
Jenkins, G. M., D. G.Watts, Spectral Analysis and Its Applications, 525, Holden‐Day, Oakland, Calif., 1968. |
Библиографическая ссылка |
Kirkpatrick, S., C. D.GelattJr., M. P.Vecchi, Optimization by simulated annealing, Science, 220, 671–680, 1989. |
Библиографическая ссылка |
Martinson, D. G., W.Menke, P.Stoff, An inverse approach to signal correlation, J. Geophys. Res., 87, 4807–4818, 1982. |
Библиографическая ссылка |
Martinson, D. G., N. G.Pisias, J. D.Hays, J.Imbrie, T. C.Moore, N. J.Shackleton, Age dating and the orbital theory of the ice ages: Development of a high‐resolution O to 300 000‐year chronostratigraphy, Quart. Res., 27, 1–29, 1987. |
Библиографическая ссылка |
Metropolis, N. A., W.Rosenbluth, M. N.Rosenbluth, A. H.Teller, E.Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087–1092, 1953. |
Библиографическая ссылка |
Milankovitch, M., Astronomische Mittel zur Erforschung der erdgeschichtlichen Klimate, Handbuch der Geophysik IX, Band 3B.Gutenberg, 593–698, Verlag Gebrüder Borntraeger, Berlin, 1938. |
Библиографическая ссылка |
Prell, W. L., J.Imbrie, D. G.Martinson, J. J.Morley, N. G.Pisias, N. J.Shackleton, H. F.Streeter, Graphic correlation of oxygen isotope stratigraphy application to the Late Quaternary, Paleoceanography, 1, 137–162, 1986. |
Библиографическая ссылка |
Sarnthein, M., H.Erlenkeuser, R.vonGrafenstein, C.Schröder, Stable‐isotope stratigraphy for the last 750 000 years: “Meteor” core 13519 from the eastern equatorial Atlantic, “Meteor” Forschungsergeb., Reihe C, 38, 9–24, 1984. |
Библиографическая ссылка |
Shackleton, N. J., R. K.Matthews, Oxygen isotope stratigraphy of Late Pleistocene coral terraces in Barbados, Nature, 268, 618–620, 1977. |
Библиографическая ссылка |
Shackleton, N. J., N. D.Opdyke, Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific Core V28–238: Oxygen isotope temperatures and ice volumes on a 10<sup>5</sup> year and 10<sup>6</sup> year scale, Quart. Res., 3, 39–55, 1973. |
Библиографическая ссылка |
Shackleton, N. J., A.Berger, W. R.Peltier, An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677, Trans. R. Soc. Edinburgh Earth Sci., 81, 251–261, 1990. |
Библиографическая ссылка |
Walter, R. C., P. C.Manega, R. L.Hay, R. E.Drake, G. H.Curtis, Laser‐fusion <sup>40</sup>Ar/<sup>39</sup>Ar dating of Bed I, Olduvai Gorge, Tanzania, Nature, 354, 145–149, 1991. |