Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Sowers, Todd
Автор Bender, Michael
Автор Labeyrie, Laurent
Автор Martinson, Doug
Автор Jouzel, Jean
Автор Raynaud, Dominique
Автор Pichon, Jean Jacques
Автор Korotkevich, Yevgeniy Sergeevich
Дата выпуска 1993
dc.description The object of the present study is to introduce a means of comparing the Vostok and marine chronologies. Our strategy has been to use the δ<sup>18</sup>O of atmospheric O<sub>2</sub> (denoted δ<sup>18</sup>O<sub>atm</sub>) from the Vostok ice core as a proxy for the δ<sup>18</sup>O of seawater (denoted δ<sup>18</sup>O<sub>sw</sub>). Our underlying premise in using δ<sup>18</sup>O<sub>atm</sub> as a proxy for δ<sup>18</sup>O<sub>sw</sub> is that past variations in δ<sup>18</sup>O<sub>sw</sub> (an indicator of continental ice volume) have been transmitted to the atmospheric O<sub>2</sub> reservoir by photosynthesizing organisms in the surface waters of the world's oceans. We compare our record of δ<sup>18</sup>O<sub>atm</sub> to the δ<sup>18</sup>O<sub>sw</sub> record which has been developed from studies of the isotopic composition of biogenic calcite (δ<sup>18</sup>O<sub>foram</sub>) in deep‐sea cores. We have tied our δ<sup>18</sup>O<sub>atm</sub> record from Vostok to the SPECMAP timescale throughout the last 135 kyr by correlating δ<sup>18</sup>O<sub>atm</sub> with a δ<sup>18</sup>O<sub>sw</sub> record from V19‐30. Results of the correlation indicate that 77% of the variance is shared between these two records. We observed differences between the δ<sup>18</sup>O<sub>atm</sub> and the δ<sup>18</sup>O<sub>sw</sub> records during the coldest periods, which indicate that there have been subtle changes in the factors which regulate δ<sup>18</sup>O<sub>atm</sub> other than δ<sup>18</sup>O<sub>sw</sub>. Our use of δ<sup>18</sup>O<sub>atm</sub> as a proxy for δ<sup>18</sup>O<sub>sw</sub> must therefore be considered tentative, especially during these periods. By correlating δ<sup>18</sup>O<sub>atm</sub> with δ<sup>18</sup>O<sub>sw</sub>, we provide a common temporal framework for comparing phase relationships between atmospheric records (from ice cores) and oceanographic records constructed from deep‐sea cores. Our correlated age‐depth relation for the Vostok core should not be considered an absolute Vostok timescale. We consider it to be the preferred timescale for comparing Vostok climate records with marine climate records which have been placed on the SPECMAP timescale. We have examined the fidelity of this common temporal framework by comparing sea surface temperature (SST) records from sediment cores with an Antarctic temperature record from the Vostok ice core. We have demonstrated that when the southern ocean SST and Antarctic temperature records are compared on this common temporal framework, they show a high degree of similarity. We interpret this result as supporting our use of the common temporal framework for comparing other climate records from the Vostok ice core with any climate record that has been correlated into the SPECMAP chronology.
Формат application.pdf
Копирайт Copyright 1993 by the American Geophysical Union.
Тема ATMOSPHERIC PROCESSES
Тема Paleoclimatology
Тема OCEANOGRAPHY: GENERAL
Тема 4267
Тема OCEANOGRAPHY: PHYSICAL
Тема General circulation
Тема OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL
Тема Marine organic chemistry
Тема INFORMATION RELATED TO GEOLOGIC TIME
Тема Cenozoic
Название A 135,000‐year Vostok‐Specmap Common temporal framework
Тип article
DOI 10.1029/93PA02328
Electronic ISSN 1944-9186
Print ISSN 0883-8305
Журнал Paleoceanography
Том 8
Первая страница 737
Последняя страница 766
Выпуск 6
Библиографическая ссылка Bard, E., B.Hamelin, R.Fairbanks, A.Zindler, Calibration of the <sup>14</sup>C timescale over the past 30,000 years using mass spectrometric U‐Th ages from Barbados corals, Nature, 345, 405–410, 1999a.
Библиографическая ссылка Bard, E., B.Hamelin, R. G.Fairbanks, U‐Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years, Nature, 346, 456–458, 1990b.
Библиографическая ссылка Barnola, J. M., D.Raynaud, Y. S.Korotkevich, C.Lorius, Vostok ice core provides 160,000‐ year record of atmospheric CO<sub>2</sub>, Nature, 329, 408–414, 1987.
Библиографическая ссылка Barnola, J. M., P.Pimienta, D.Raynaud, Y. S.Korotkevich, CO2‐climate relationship as deduced from the Vostok ice core: A reexamination based on new measurements and on a reevaluation of the air dating, Tellus, Ser. B, 43, 83–90, 1991.
Библиографическая ссылка Beer, J., S. J.Johnsen, G.Bonnani, R. C.Finkel, C. C.Langway, H.Oeschger, B.Stauffer, M.Suter, W.Woelfli, <sup>10</sup>Be peaks as time markers in polar ice cores, The Last Deglaciation: Absolute and Radiocarbon ChronologiesE.Bard, W.Broecker, 141–153, Springer‐Verlag, New York, 1992.
Библиографическая ссылка Bender, M. L., L. D.Labeyrie, D.Raynaud, C.Lorius, Isotopic composition of atmospheric O2 in ice linked with deglaciation and global primary productivity, Nature, 318, 349–352, 1985.
Библиографическая ссылка Birchfield, G. E., Changes in deep‐ocean water δ<sup>18</sup>O and temperature from the last glacial maximum to the present, Paleoceanography, 2, 431–442, 1987.
Библиографическая ссылка Chappell, J., N. J.Shackleton, Oxygen isotopes and sea level, Nature, 324, 137–140, 1986.
Библиографическая ссылка Chappellaz, J., J.‐M.Barnola, D.Raynaud, Y. S.Korotkevich, C.Lorius, Atmospheric CH<sub>4</sub> record over the last climatic cycle revealed by the Vostok ice core, Nature, 345, 127–131, 1990.
Библиографическая ссылка Craig, H., Y.Horibe, T. A.Sowers, Gravitational separation of gases and isotopes in polar ice caps, Science, 242, 1675–1678, 1988.
Библиографическая ссылка Dansgaard, W., H. B.Clausen, N.Gundestrup, S. J.Johnsen, C.Rygner, Dating and climatic interpretation of two deep Greenland ice cores, Greenland Ice Core: Geophysics, Geochemistry, and the Environment, Geophys. Monogr. Ser., 33C. C.LangwayJr., et al., 71–76, AGU, Washington, D.C., 1985.
Библиографическая ссылка Dole, M., The relative atomic weight of oxygen in water and air, J. Am. Chem. Soc., 57, 2731–2732, 1935.
Библиографическая ссылка Dole, M., G. A.Lane, D. P.Rudd, D. A.Zaukelies, Isotopic composition of atmospheric oxygen and nitrogen, Geochim. Cosmochem. Acta., 6, 65–78, 1954.
Библиографическая ссылка Etheridge, D., G.Pearman, P.Fraser, Changes in tropospheric methane between 1841 and 1978 from a high accumulation rate Antarctic ice core, Tellus, Ser. B, 44, 282–294, 1992.
Библиографическая ссылка Fairbanks, R. G., R. K.Matthews, The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies, Quat. Res. N. Y., 10, 181–196, 1978.
Библиографическая ссылка Guiot, J., A.Pons, J. L.deBeaulieu, M.Reille, A 140,000‐year continental climate reconstruction from two European pollen records, Nature, 338, 309–313, 1989.
Библиографическая ссылка Hammer, C. U., H. B.Clausen, H.Tauber, Ice‐core dating of the Pleistocene/Holocene boundary applied to a calibration of the <sup>14</sup>C time scale, Radiocarbon, 28, 284–291, 1986.
Библиографическая ссылка Hays, J. D., J.Imbrie, N. J.Shackleton, Variations in the Earth's orbit: Pacemaker of the ice ages, Science, 194, 1121–1132, 1976a.
Библиографическая ссылка Hays, J. D., J.Lozano, N.Shackleton, G.Irving, Reconstruction of the Atlantic and Western Indian Ocean sectors of the 18,000 B. P. Antarctic Ocean, Investigation of Late Quaternary Paleoceanography and PaleoclimatologyR. M.Cline, 337–372, Geological Society of America, Boulder, Colo., 1976b.
Библиографическая ссылка Herron, M. M., C. C.LangwayJr., Firn densification: An empirical model, J. Glaciol., 25, 373–385, 1980.
Библиографическая ссылка Hovan, S. A., D. K.Rea, N. G.Pisias, Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments, Paleoceanography, 6, 349–370, 1991.
Библиографическая ссылка Howard, W. R., W. L.Prell, Late Quaternary surface circulation of the Southern Indian Ocean and its relationship to orbital variations, Paleoceanography, 7, 79–118, 1992.
Библиографическая ссылка Imbrie, J., J. D.Hays, D. G.Martinson, A.McIntyre, A. C.Mix, J. J.Morley, N. G.Pisias, W. L.Prell, N. J.Shackleton, The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ<sup>18</sup>O record, Milankovitch and ClimateA.Berger, et al., 269–305, D. Reidel, Norwell, Mass., 1984.
Библиографическая ссылка Johnsen, S. J., H. B.Clausen, W.Dansgaard, K.Fuhrer, N.Gundestrup, C. U.Hammer, P.Iversen, J.Jouzel, B.Stauffer, J. P.Steffensen, Irregular glacial interstadials recorded in a new Greenland ice core, Nature, 359, 311–313, 1992.
Библиографическая ссылка Jouzel, J., L.Merlivat, Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation, J. Geophys. Res., 89, 11,749–11,757, 1984.
Библиографическая ссылка Jouzel, J., C.Lorius, J. R.Petit, C.Genthon, N. I.Barkov, V. M.Kotlyakov, V. M.Petrov, Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years), Nature, 329, 403–407, 1987.
Библиографическая ссылка Jouzel, J., G.Raisbeck, J. P.Benoist, F.Yiou, C.Lorius, D.Raynaud, J. R.Petit, N. I.Barkov, Y. S.Korotkevitch, V. M.Kotlyakov, A comparison of deep Antarctic ice cores and their implications for climate between 65,000 and 15,000 years ago, Quat. Res. N.Y., 31, 135–150, 1989.
Библиографическая ссылка Jouzel, J., J. R.Petit, N. I.Barkov, J. M.Barnola, J.Chappellaz, P.Ciais, v. M.Kotkyakov, C.Lorius, V. N.Petrov, D.Raynaud, C.Ritz, The last deglaciation in Antarctica: Further evidence of a “Younger Dryas” type climatic event., The Last Deglaciation: Absolute and Radiocarbon ChronologiesE.Bard, W.Broecker, 229–266, Springer‐Verlag, New York, 1992.
Библиографическая ссылка Jouzel, J., N. I.Barkov, J. M.Barnola, M.Bender, J.Chappellaz, C.Genthon, V. M.Kotlyakov, V.Lipenkov, C.Lorius, J. R.Petit, D.Raynaud, G.Raisbeck, C.Ritz, T.Sowers, M.Stievenard, F.Yiou, P.Yiou, Vostok ice cores: extending the climatic records over the penultimate glacial period, Nature, 364, 407–412, 1993.
Библиографическая ссылка Kotlyakov, V. M., Global changes over the last climatic cycle from Antarctic ice core records, Glaciers‐Ocean‐Atmosphere InteractionsV. M.Kotlyakkov, 15–27, International Association of Hydrological Sciences, St. Petersburg, Russia, 1990.
Библиографическая ссылка Kroopnick, P., H.Craig, Atmospheric oxygen: Isotopic composition and solubility fractionation, Science, 175, 54–55, 1972.
Библиографическая ссылка Kukla, G., Z. A.An, Loess stratigraphy in central China, Palaeogeogr. PalaeoclimatoL Palaeoecol., 72, 203–225, 1989.
Библиографическая ссылка Labeyrie, L. D., J. C.Duplessy, P. L.Blanc, Variations in mode of formation and température of oceanic deep waters over the past 125,000 years, Nature, 327, 477–482, 1987.
Библиографическая ссылка Lambeck, K., M.Nakada, Constraints on the age and duration of the last interglacial period and on sea‐level variations, Nature, 357, 125–128, 1992.
Библиографическая ссылка Lao, Y., R. F.Anderson, W. S.Broecker, S. E.Trumbore, F. J.Hofmann, W.Wolfli, Increased production of cosmogenic <sup>10</sup>Be during the last glacial maximum, Nature, 357, 576–578, 1992.
Библиографическая ссылка Lorius, C., J.Jouzel, C.Ritz, L.Merlivat, N. E.Barkov, Y. S.Korotkevich, A 150,000‐year climatic record from Antarctic ice, Nature, 316, 591–595, 1985.
Библиографическая ссылка Lozano, J., J. D.Hays, Relationship of radiolarian assemblages to sediment types and physical oceanography in the Atlantic and Western Indian ocean sectors of the Antarctic Ocean, Investigation of Late Quaternary Paleoceanography and PaleoclimatologyJ. D.Hays, 303–336, Geological Society of America, Boulder, Colo., 1976.
Библиографическая ссылка Lyle, M., Climatically forced organic carbon burial in equatorial Atlantic and Pacific oceans, Nature, 335, 529–532, 1988.
Библиографическая ссылка Martinerie, P., D.Raynaud, D.Etheridge, J.‐M.Barnola, D.Mazaudier, Physical and climatic parameters which influence the air content in polar ice, Earth Planet. Sci. Lett., 112, 1–13, 1992.
Библиографическая ссылка Martinson, D. G., W.Menke, P.Stoffa, An inverse approach to signal correlation, J. Geophys. Res., 87, 4807–4818, 1982.
Библиографическая ссылка Martinson, D. G., N. G.Pisias, J. D.Hays, J.Imbrie, T. C.MooreJr., N. J.Shackleton, Age dating and the orbital theory of the ice ages: development of a high‐resolution 0 to 300,000‐ year chronostratigraphy, Quat. Res. N.Y., 27, 1–27, 1987.
Библиографическая ссылка Meyer, M. K., Net primary productivity estimates for the last 18,000 years evaluated from simulations by a global climate model, M. S. thesis Univ. of Wisconsin, Madison, 1988.
Библиографическая ссылка Mix, A. C., Influence of productivity variations on long‐term atmospheric CO<sub>2</sub>, Nature, 337, 541–544, 1989.
Библиографическая ссылка Morita, N., The increased density of air oxygen relative to water oxygen, Nippon Kagaku Kaishi, 56, 1291, 1935.
Библиографическая ссылка Neftel, A., H.Oeschger, T.Staffelbach, B.Stauffer, CO<sub>2</sub> record in the Byrd ice core 50,000–5,000 years BP, Nature, 331, 609–611, 1988.
Библиографическая ссылка Petit, J. R., L.Mounier, J.Jouzel, Y. S.Korotkevich, V. I.Kotlyakov, C.Lorius, Paleoclimatological and chronological implications of the Vostok core dust record, Nature, 343, 56–58, 1990.
Библиографическая ссылка Phillpot, H. R., J. W.Zillman, The surface temperature inversion over the Antarctic continent, J. Geophys. Res., 75, 4161–4169, 1970.
Библиографическая ссылка Pichon, J.‐J., L. D.Labeyrie, G.Bareille, M.Labracherie, J.Durpat, J.Jouzel, Surface water temperature changes in the high latitudes of the southern hemisphere over the last glacialinterglacial cycle, Paleoceanography, 7, 289–318, 1992.
Библиографическая ссылка Pisias, N. G., D. G.Martinson, T. C.Moore, N. J.Shackleton, W.Prell, B.Boden, High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years, Mar. Geol., 56, 119–136, 1984.
Библиографическая ссылка Prell, W. L., J. E.Kutzbach, Monsoon variability over the past 150,000 years, J. Geophys. Res., 92, 8411–8425, 1987.
Библиографическая ссылка Prell, W. L., J.Imbrie, D. G.Martinson, J. J.Morley, N. G.Pisias, N. J.Shackleton, H. F.Streeter, Graphic correlation of oxygen isotope stratigraphy: Application to the late Quaternary, Paleoceanography, 1, 137–162, 1986.
Библиографическая ссылка Raisbeck, G. M., F.Yiou, D.Bourles, C.Lorius, J.Jouzel, N. I.Barkov, Evidence for two intervals of enhanced <sup>10</sup>Be deposition in Antarctic ice during the last glacial period, Nature, 326, 273–277, 1987.
Библиографическая ссылка Raisbeck, G. M., F.Yiou, J.Jouzel, J. R.Petit, N. I.Barkov, E.Bard, <sup>10</sup>Be deposition at Vostok, Antarctica during the last 50,000 years and its relationship to possible cosmogenic production variations during this period, The Last Deglaciation: Absolute and Radiocarbon ChronologiesE.Bard, W.Broecker, 125–139, Springer‐Verlag, New York, 1992.
Библиографическая ссылка Raynaud, D., J.Chappellaz, J.‐M.Barnola, Y. S.Korotkevich, C.Lorius, Climatic and CH<sub>4</sub> cycle implications of glacial‐interglacial CH<sub>4</sub> change in the Vostok ice core, Nature, 333, 655–657, 1988.
Библиографическая ссылка Reeh, N., S. J.Johnsen, D.Dahl‐Jensen, Dating the Dye 3 deep ice core by flow model Calculations, Greenland Ice Core: Geophysics, Geochemistry, and the Environment, Geophys. Monogr. Ser., 33C. C.LangwayJr., et al., 71–76, AGU, Washington, D.C., 1985.
Библиографическая ссылка Ritz, C., Flow modeling the Vostok region, Ph. D. dissertation, Domaine Univ., Grenoble, France, 1992.
Библиографическая ссылка Robin, G. D. Q., Ice cores and climatic changes, Philos. Trans.R. Soc. London, Ser. B, 280, 143–168, 1977.
Библиографическая ссылка Sarnthein, M., E.Jansen, M.Arnold, J. C.Duplessy, H.Erienkeuser, A.Flatoy, T.Veum, E.Vogelsang, M. S.Weinelt, δ<sup>18</sup>O time‐slice reconstruction of meltwater anomalies at termination I in the North Atlantic between 50 and 80°N, The Last Deglaciation: Absolute and Radiocarbon ChronologiesE.Bard, W. S.Broecker, 183–200, Springer‐Verlag, New York, 1992.
Библиографическая ссылка Schwander, J., The transformation of snow to ice and the occlusion of gases, The Environmental Record in Glaciers and Ice SheetsH.Oeschger, C. C.Langway, 53–67, John Wiley, New York, 1989.
Библиографическая ссылка Shackleton, N. J., Oxygen isotopes, ice volume and sea level, Quat. Sci. Rev., 6, 183–190, 1987.
Библиографическая ссылка Shackleton, N. J., N. D.Opdyke, Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 10<sup>5</sup> and 10<sup>6</sup> year scale, Quat. Res. N. Y., 3, 39–55, 1973.
Библиографическая ссылка Shackleton, N. J., N. G.Pisias, Atmospheric carbon dioxide, orbital forcing, and climate, The Carbon Cycle and Atmospheric CO<sub>2</sub> Natural Variations Archean to Present, Geophys. Monogr. Ser., 32E. T.Sundquist, W. S.Broecker, 303–317, AGU, Washington, DC, 1985.
Библиографическая ссылка Shackleton, N., J.Le, A.Mix, M. A.Hall, Carbon isotope records from Pacific surface waters and atmospheric carbon dioxide, Quat. Sci. Rev., 11, 387–400, 1992.
Библиографическая ссылка Sowers, T. A., M. L.Bender, D.Raynaud, Elemental and isotopic composition of occluded O<sub>2</sub> and N<sub>2</sub> in polar ice, J. Geophys. Res., 94, 5137–5150, 1989.
Библиографическая ссылка Sowers, T., M.Bender, D.Raynaud, Y. S.Korotkevich, J.Orchardo, The δ<sup>18</sup>O of atmospheric O<sub>2</sub> from air inclusions in the Vostok ice core: Timing of CO<sub>2</sub> and ice volume changes during the penultimate Deglaciation, Paleoceanography, 6, 679–696, 1991.
Библиографическая ссылка Sowers, T., M.Bender, D.Raynaud, Y. S.Korotkevich, The δ<sup>15</sup>N of N<sub>2</sub> in air trapped in polar ice: A tracer of gas transport in the firn and a possible constraint on ice age‐gas age differences, J. of Geophys. Res., 97, 15,683–15,697, 1992.
Библиографическая ссылка Stauffer, B., E.Lochbronner, H.Oeschger, J.Schwander, Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene, Nature, 332, 812–814, 1988.
Библиографическая ссылка Yiou, F., G. M.Raisbeck, D.Bourles, C.Lorius, N. I.Barkov, <sub>10</sub>Be in ice at Vostok Antarctica during the last climatic cycle, Nature, 316, 616–617, 1985.

Скрыть метаданые