Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Coleman, Paul J.
Дата выпуска 1971
dc.description A heuristic model of the geomagnetic cavity is introduced. The model includes a unipolar induction current J<sub>U</sub>, that is driven by the solar wind. The current is generated by the solar wind plasma flowing in the magnetopause boundary layer. This current closes in the ionosphere. The electromagnetic forces associated with J<sub>U</sub> drive the magnetospheric convection. Even though the solar wind plasma at the magnetopause is basically collisionless, the plasma penetrates more deeply into the geomagnetic cavity than it would if the magnetopause were an ideal Chapman‐Ferraro sheath because the boundary layer flow is non‐adiabatic in the regions where J<sub>U</sub> is nonzero. Downstream from the earth the resulting expanded boundary layer forms the plasma sheet and the geomagnetic tail. Since the generation of J<sub>U</sub> does not depend on the existence of an interplanetary magnetic field, the geomagnetic cavity is closed when the interplanetary field is zero. The tangential drag is developed in the part of the boundary layer that lies forward of the midnight‐meridian intersection of the leading edge of the neutral sheet. The tail is produced by the inflation of the downstream part of the modified cavity that is formed by the superposition of the geomagnetic field and the magnetic field of J<sub>U</sub>. Transient phenomena produced by changes in J<sub>U</sub> include substorm expansions and injections of ring current particles which are initiated by decreases in J<sub>U</sub>. Changes in J<sub>U</sub> are caused by changes in the solar wind velocity (i.e., by changes in the unipolar emf) and by changes in the effective resistance to the flow of J<sub>U</sub>. If there is a critical value of |J<sub>U</sub>| above which the current is unstable, then there is a corresponding critical magnitude of the unipolar emf and therefore of the solar wind velocity. Such an instability in J<sub>U</sub> would account for the positive correlation between solar wind velocity and Kp. When the interplanetary magnetic field is greater than zero, shear stresses are set up between the solar wind plasma in the magnetopause boundary layer and that in the magnetosheath. The unipolar induction, i.e., the unipolar emf, and the resulting tangential drag then depend on the direction and magnitude of the interplanetary field as well as on the velocity of the solar wind and the electrical (Pedersen) resistivity of the magnetospheric plasma. The many attractive features of the model, especially the simplicity of the tangential drag mechanism, suggest that unipolar induction is a competitive alternative to magnetic field line reconnection and the other mechanisms that have been proposed to account for the tangential drag on the cavity and the various transient cavity phenomena.
Формат application.pdf
Копирайт Copyright 1971 by the American Geophysical Union.
Название A Model of the Geomagnetic Cavity
Тип article
DOI 10.1029/RS006i002p00321
Electronic ISSN 1944-799X
Print ISSN 0048-6604
Журнал Radio Science
Том 6
Первая страница 321
Последняя страница 340
Выпуск 2
Библиографическая ссылка Akasofu, S.‐I., Dynamic morphology of auroras, Space Sci. Rev., 4, 498–540, 1965.
Библиографическая ссылка Axford, W. I., C. O.Hines, A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms, Can. J. Phys., 39, 1433–1464, 1961.
Библиографическая ссылка Axford, W. I., The interaction between the solar wind and the magnetosphere, Physics of Geomagnetic PhenomenaS.Matsushita, W. H.Campbell, 1243, Academic, New York, 1967.
Библиографическая ссылка Axford, W. I., Magnetospheric convection, Rev. Geophys., 7, 421–459, 1969.
Библиографическая ссылка Carpenter, D. L., The magnetosphere during magnetic stormsRadio Sci. Lab. Rep. SEL‐62‐059Stanford University, California, 1962.
Библиографическая ссылка Cole, K. D., On solar wind generation of polar geomagnetic disturbance, Geophys. J. Roy. Astron. Soc., 6, 103–114, 1961.
Библиографическая ссылка ColemanJr., P. J., Tangential drag on the geomagnetic cavity, Cosmic Electrodyn., 1, 145, 1970.
Библиографическая ссылка Cummings, W. D., J. N.Barfield, P. J.ColemanJr., Magnetospheric substorms observed at the synchronous orbit, J. Geophys. Res., 73, 6687–6698, 1968.
Библиографическая ссылка Davis, T. N., R.Parthasarathy, The relationship between polar magnetic activity DP and the growth of the geomagnetic ring current, J. Geophys. Res., 72, 5825–5836, 1967.
Библиографическая ссылка Dungey, J. W., Cosmical Electrodynamics, Cambridge University Press, New York, 1958.
Библиографическая ссылка Dungey, J. W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47–48, 1961.
Библиографическая ссылка Dungey, J. W., T. W.Speiser, Electromagnetic noise in the current sheet and in the geomagnetic tail, Planet. Space Sci., 17, 1285–1290, 1969.
Библиографическая ссылка Fairfield, D. H., L. J.Cahill, Transition region magnetic field and polar magnetic disturbances, J. Geophys. Res., 71, 155–169, 1966.
Библиографическая ссылка Frank, L. A., Several observations of low‐energy protons and electrons in the earth's magnetosphere with OGO 3, J. Geophys. Res., 72, 1905–1916, 1967.
Библиографическая ссылка FreemanJr., J. W., J. J.Maguire, Gross local‐time particle asymmetries at the synchronous orbit altitude, J. Geophys. Res., 72, 5257–5264, 1967.
Библиографическая ссылка Gringauz, K. I., Low‐energy plasma in the earth's magnetosphere, Rev. Geophys., 7, 339–378, 1969.
Библиографическая ссылка Johnson, F. S., The gross character of the geomagnetic field in the solar wind, J. Geophys. Res., 65, 3049–3052, 1960.
Библиографическая ссылка Lerche, I., On the boundary layer between a warm, streaming plasma and a confined magnetic field, J. Geophys. Res., 72, 5295–5310, 1967.
Библиографическая ссылка Nishida, A., Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73, 5549–5559, 1968.
Библиографическая ссылка Parker, E. N., Interplanetary Dynamical ProcessesChapter X, Interscience, New York, 1963.
Библиографическая ссылка Parker, E. N., Small‐scale nonequilibrium of the magnetopause and its consequences, J. Geophys. Res., 72, 4365–4374, 1967.
Библиографическая ссылка Piddington, J. H., A theory of auroras and the ring current, J. Atmos. Terr. Phys., 29, 87–105, 1967.
Библиографическая ссылка Rostoker, G., C. G.Falthammar, Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the earth's surface, J. Geophys. Res., 72, 5853–5863, 1967.
Библиографическая ссылка Snyder, C. W., M.Neugebauer, U. R.Rao, The solar wind velocity and its correlation with cosmic‐ray variations and with solar and geomagnetic activity, J. Geophys. Res., 68, 6361–6370, 1963.
Библиографическая ссылка Sonett, C. P., D. S.Colburn, The SI<sup>+</sup> — Si<sup>‐</sup> pair and interplanetary forward‐reverse shock ensembles, Planet. Space Sci., 13, 675–692, 1965.
Библиографическая ссылка Tverskoy, B. A., Main mechanisms in the formation of the earth's radiation belts, Rev. Geophys., 7, 219–231, 1969.
Библиографическая ссылка Van Allen, J. A., Charged particles in the magnetosphere, Rev. Geophys., 7, 233–255, 1969.
Библиографическая ссылка Vasyliunas, V. M., A survey of low‐energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3, J. Geophys. Res., 73, 2839–2884, 1968.

Скрыть метаданые