Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Liu, Philip L.‐F.
Дата выпуска 1976
dc.description Nonlinear diffusion problems with a constant boundary condition are investigated. The concept of diffusion front is utilized to develop a perturbation solution. Results are presented for two specific diffusivities which are functions of the concentrations. The present technique is shown to be efficient and accurate.
Формат application.pdf
Копирайт Copyright 1976 by the American Geophysical Union.
Тема HYDROLOGY
Тема Soil moisture
Тема General or miscellaneous
Название A perturbation solution for a nonlinear diffusion equation
Тип article
DOI 10.1029/WR012i006p01235
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 12
Первая страница 1235
Последняя страница 1240
Выпуск 6
Библиографическая ссылка Babu, D. K., Infiltration analysis and perturbation methods, 1, Absorption with exponential diffusivity, Water Resour. Res., 12, 89–93, 1976.
Библиографическая ссылка Brutsaert, W., The adaptability of an exact solution to horizontal infiltration, Water Resour. Res., 4, 785–789, 1968.
Библиографическая ссылка Brutsaert, W., More on an approximate solution for nonlinear diffusion, Water Resour. Res., 10, 1251–1252, 1974.
Библиографическая ссылка Brutsaert, W., The concise parameterization of diffusion sorption of water in a dry soil, Water Resour. Res., 126,1976.
Библиографическая ссылка Brutsaert, W., R. N.Weisman, Comparison of solutions of a nonlinear diffusion equation, Water Resour. Res., 6, 642–644, 1970.
Библиографическая ссылка Cooper, L. Y., Constant temperature at the surface of an initially uniform temperature variable conductivity half space, J. Heat Transfer, 93, 55–60, 1971.
Библиографическая ссылка Crank, J., The Mathematics of Diffusion, 347, Clarendon, Oxford, 1956.
Библиографическая ссылка Heaslet, M. A., A.Alksne, Diffusion from a fixed surface with a concentration‐dependent coefficient, J. Soc. Ind. Appl. Math., 9, 584–596, 1961.
Библиографическая ссылка Hildebrand, F. B., Advanced Calculus for Applications, Prentice‐Hall, Englewood Cliffs, N. J., 1963.
Библиографическая ссылка Liu, P. L.‐F., Comment on ‘Infiltration analysis and perturbation methods, 1, Absorption with exponential diffusivity’ by D. K. Babu, Water Resour. Res., 126,1976.
Библиографическая ссылка Parlange, J.‐Y., Theory of water‐movement in soils, 1, One‐dimensional absorption, Soil Sci., 111, 134–137, 1971.
Библиографическая ссылка Philip, J. R., General method of exact solution of the concentration‐dependent diffusion equation, Aust. J. Phys., 13, 1–12, 1960.
Библиографическая ссылка Philip, J. R., Theory of infiltration, Advan. Hydrosci., 5, 215–296, 1969.
Библиографическая ссылка Philip, J. R., J. H.Knight, On solving the unsaturated flow equation, 3, New quasi‐analytical technique, Soil Sci., 117, 1–13, 1974.
Библиографическая ссылка Pierson, W. J., Perturbation analysis of the Navier‐Stokes equations in Lagrangian form with selected linear solutions, J. Geophys. Res., 67, 3151–3160, 1962.
Библиографическая ссылка Reichardt, K., D. R.Nielsen, J. W.Biggar, Scaling of horizontal infiltration into homogeneous soils, Soil. Sci., 36, 241–245, 1972.
Библиографическая ссылка Schlichting, H., Boundary‐Layer Theory, McGraw‐Hill, New York, 1968.

Скрыть метаданые