Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bobée, B.
Автор Boucher, P.
Дата выпуска 1981
dc.description It is possible to determine in an explicit fashion the distribution of the order statistics for the Wakeby distribution. The confidence intervals of an event of return period T can be calculated at any given level. Since the determination of the variance of an event of a given return period has not yet been computed for the proposed methods of estimation of the parameters of the Wakeby distribution, the general procedure presented in this report makes possible an approximate determination of the confidence intervals when the distribution is fitted to a sample of size N. This procedure is particularly easy to apply to distributions such as the Wakeby distribution, which may be expressed in inverse form.
Формат application.pdf
Копирайт Copyright 1981 by the American Geophysical Union.
Тема HYDROLOGY
Тема Hydrology
Тема Hydrology
Название Determination of the confidence intervals of the Wakeby Distribution using order statistics
Тип article
DOI 10.1029/WR017i004p01225
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 17
Первая страница 1225
Последняя страница 1230
Выпуск 4
Библиографическая ссылка Bobée, B., Determination of the confidence intervals of the Pearson type 3 distribution: Comparison of methods, J. Hydrol. Amsterdam, 1980.
Библиографическая ссылка Bobée, B., P.Boucher, Etude des propriétés de la distribution Wakeby, Rapp. Sci., 115, 36, Inst. Natl. de la Rech. Sci. Eau, Québec, Que., 1979.
Библиографическая ссылка Bobée, B., G.Morin, Détermination des intervalles de confiance de la loi Pearson type 3 par les statistiques d'ordre, J. Hydrol. Amsterdam, 20, 137–153, 1973.
Библиографическая ссылка Brunet‐Moret, Y., Statistiques de rang, Cah. ORSTOM, Ser. Hydrol., 102, 133–151, 1973.
Библиографическая ссылка Chow, V. T., Frequency analysis of hydrology data with special application to rainfall intensities, Eng. Exp. Stn. Bull., 414, Univ. of Illinois, Urbana, 1953.
Библиографическая ссылка Chow, V. T., Handbook of Applied Hydrology, McGraw‐Hill, New York, 1964.
Библиографическая ссылка Gladwell, J. S., C.‐N.Lin, Confidence limits determined using order statistics, Water Resour. Res., 55, 1120–1123, 1969.
Библиографическая ссылка Greenwood, J. A., J. M.Landwehr, N. C.Matalas, J. R.Wallis, Probability weighted moments: Definition and relation to parameters of several distribution expressable in inverse form, Water Resour. Res., 155, 1049–1054, 1979.
Библиографическая ссылка Houghton, J. C., Robust estimation of the frequency of extreme events in a flood frequency context, Ph.D. dissertation,Harvard Univ.,Cambridge, Mass.,1977.
Библиографическая ссылка Houghton, J. C., Birth of a parent: The Wakeby distribution for modeling flood flows, Water Resour. Res., 146, 1105–1109, 1978a.
Библиографическая ссылка Houghton, J. C., The incomplete means estimation procedure applied to flood frequency analysis, Water Resour. Res., 146, 1111–1115, 1978b.
Библиографическая ссылка Kendall, M., A.Stuart, The Advanced Theory of Statistics, 1, 439, Charles Griffin, London, 1963.
Библиографическая ссылка Landwehr, J. M., N. C.Matalas, J. R.Wallis, Some comparisons of flood statistics in real and log space, Water Resour. Res., 145, 902–920, 1978.
Библиографическая ссылка Landwehr, J. M., N. C.Matalas, J. R.Wallis, Estimation of parameters and quantiles of Wakeby distributions, 1, Known lower bounds, Water Resour. Res., 156, 1361–1372, 1979a.
Библиографическая ссылка Landwehr, J. M., N. C.Matalas, J. R.Wallis, Estimation of parameters and quantiles of Wakeby distributions, 2, Unknown lower bounds, Water Resour. Res., 156, 1373–1379, 1979b.
Библиографическая ссылка Matalas, N. C., J. R.Slack, J. R.Wallis, Regional skew in search of a parent, Water Resour. Res., 116, 815–826, 1975.
Библиографическая ссылка Sarhan, A. E., G. E.Greenberg, Contributions to Order Statistics, John Wiley, New York, 1962.
Библиографическая ссылка Tukey, J. W., The practical relationship between the common transformations of percentages or fractions and of amountsTech. Rep. 36Statist. Tech. Res. Group, Princeton Univ., Princeton, N. J., 1960.

Скрыть метаданые