Автор |
Carrera, Jesus |
Автор |
Neuman, Shlomo P. |
Дата выпуска |
1986 |
dc.description |
Paper 2 of this three‐part series starts with a discussion of the question, Under what conditions is the aquifer inverse problem well‐posed? After defining the terms uniqueness, identifiability, and stability, theoretical considerations and synthetic examples are used to demonstrate that ill‐posedness can be mitigated by including prior information about the parameters in the estimation criterion to be minimized. At the same time, the inclusion of such information is shown to be insufficient to guarantee uniqueness and stability in all cases. Several test problems in the recent literature, which have resulted in pessimistic conclusions about the solvability of the aquifer inverse problem, are shown to be ill‐posed; a question is thus raised about the validity of these conclusions in the general case. Various conjugate gradient algorithms, coupled with the adjoint state finite element method for computing the gradient of the estimation criterion, and with Newton's method for determining the optimum step size downgradient, are compared. A marked improvement in the rate at which these algorithms converge is shown to be achieved by switching from one method to another when the former slows down or fails to converge. |
Формат |
application.pdf |
Копирайт |
Copyright 1986 by the American Geophysical Union. |
Тема |
HYDROLOGY |
Тема |
Hydrology |
Тема |
Hydrology |
Название |
Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 2. Uniqueness, Stability, and Solution Algorithms |
Тип |
article |
DOI |
10.1029/WR022i002p00211 |
Electronic ISSN |
1944-7973 |
Print ISSN |
0043-1397 |
Журнал |
Water Resources Research |
Том |
22 |
Первая страница |
211 |
Последняя страница |
227 |
Выпуск |
2 |
Библиографическая ссылка |
Allison, H., Inverse unstable problems and some of their applications, Math. Sci., 4, 9–30, 1979. |
Библиографическая ссылка |
Carrera, J., Estimation of aquifer parameters under transient and steady‐state conditions, Ph.D. dissertation,Dep. of Hydrol. and Water Resour., Univ. of Ariz.,Tucson,1984. |
Библиографическая ссылка |
Carrera, J., andS. P.Neuman, Estimation of aquifer parameters under transient and steady state conditions, 1, Maximum likelihood method incorporating prior information,Water Resour. Res., 2 (a). |
Библиографическая ссылка |
Carrera, J., andS. P.Neuman, Estimation of aquifer parameters under transient and steady state conditions, 3, Application to synthetic and field data,Water Resour. Res., 2 (b). |
Библиографическая ссылка |
Chavent, G., Analyse fonctionelle et identification de coefficients repartis des les equations aut derivees partielles, these de Docteur es Sciences,University of Paris VI,1971. |
Библиографическая ссылка |
Chavent, G., About the stability of the optimal control solution of inverse problems, Mathematical and Numerical Methods of Inverse and Improperly Posed ProblemsG.Anger, Akademie, Berlin, 1979. |
Библиографическая ссылка |
Chavent, G., Local stability of the output L.S. parameter estimation techniqueRapports de Recherche 6, 136Institut National de Recherche en Informatique et en Automatique, Rocqueucourt, France, 1982. |
Библиографическая ссылка |
Cooley, R. L., Incorporation of prior information of parameters into nonlinear regression groundwater flows models, 1. Theory, Water Resources Research, 184, 965–976, 1982. |
Библиографическая ссылка |
Cooley, R. L., P. J.Sinclair, Uniqueness of a model of steady‐state groundwater flow, J. Hydrol., 31, 245–269, 1976. |
Библиографическая ссылка |
Gavalas, G. R., P. C.Shah, T. H.Seinfeld, Reservoir history matching by Bayesian estimation, Soc. Pet. Eng. J., 261, 337–350, 1976. |
Библиографическая ссылка |
Hadamard, J., Le Probleme de Cauchy et les Equations aux Derivees Partielles Lineaires Hyperboliques, Hermann, Paris, 1932. |
Библиографическая ссылка |
, Hydro Geo Chem,Hydrologic investigation of existing pond leakage at Jim Bridger Power Plant, report prepared forPacific Power and Light Company,1984. |
Библиографическая ссылка |
Jacobson, E., A statistical parameter estimation method using singular value decomposition with application to Avra Valley in southern Arizona, Ph.D. dissertation,Univ. of Ariz.,Tucson,1985. |
Библиографическая ссылка |
Kitamura, S., S.Nakagiri, Identifiability of spatially varying and constant parameters in distributed systems of parabolic type, SIAM J. Contr. Optimiz., 155, 785–802, 1977. |
Библиографическая ссылка |
Kubrusly, C. S., Distributed parameter system identification, a survey, Int. J. Contr., 264, 509–535, 1977. |
Библиографическая ссылка |
Luenberger, D., Introduction to Linear and Nonlinear Programming, Addison‐Wesley, Reading, Mass., 1973. |
Библиографическая ссылка |
Margevicius, A. G., Identifiability issues in ground‐water parameter estimation, M.S. thesis,Case West. Reserve Univ.,Cleveland, Ohio,1983. |
Библиографическая ссылка |
McElwee, C. D., Sensitivity analysis and the ground water inverse problem, Groundwater, 206, 723–735, 1982. |
Библиографическая ссылка |
Narasimhan, T. N., S. P.Neuman, P. A.Witherspoon, Finite element method for subsurface hydrology using a mixed explicit‐implicit scheme, Water Resour. Res., 145, 863–877, 1978. |
Библиографическая ссылка |
Neuman, S. P., Calibration of distributed parameter groundwater flow models viewed as a multiple‐objective decision process under uncertainty, Water Resour. Res., 94, 1006–1021, 1973. |
Библиографическая ссылка |
Neuman, S. P., Role of subjective value judgement in parameter identification, Computer Simulation of Water Resources SystemsG. C.Vansteenkiste, 59–82, Elsevier, New York, 1975. |
Библиографическая ссылка |
Neuman, S. P., The inverse problem of groundwater hydrology, Proceedings of IBM International Seminar on Regional Groundwater Hydrology and Modeling, 210–249, IBM, Venice, 1976. |
Библиографическая ссылка |
Neuman, S. P., A statistical approach to the inverse problem of aquifer hydrology, 3, Improved solution method and added perspective, Water Resour. Res., 162, 331–346, 1980a. |
Библиографическая ссылка |
Neuman, S. P., Adjoint state finite element equations for parameter estimation, Finite Elements in Water ResourcesS. Y.Wang, 2.66–2.75, U.S. Department of Agriculture, New Orleans, La., 1980b. |
Библиографическая ссылка |
Neuman, S. P., Statistical characterization of aquifer heterogeneities: An overview, Recent Trends in Hydrogeology, GSA Spec. Pap., 189, 81–102, Geol. Soc. Am., Boulder, Colo., 1982. |
Библиографическая ссылка |
Sorooshian, S., V. K.Gupta, J. L.Fulton, Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall‐runoff models: Influence of calibration data variability and length on model credibility, Water Resour. Res., 191, 251–259, 1983. |
Библиографическая ссылка |
Tihonov, A. N., Solution of incorrectly formulated problems and the regularization method, Sov. Math. Dokl., 4, 1035–1038, 1963a. |
Библиографическая ссылка |
Tihonov, A. N., Regularization of incorrectly posed problems, Sov. Math. Dokl., 4, 1624–1627, 1963b. |
Библиографическая ссылка |
Yakowitz, S., L.Duckstein, Instability in aquifer identification: Theory and case study, Water Resour. Res., 166, 1045–1064, 1980. |
Библиографическая ссылка |
Yeh, W. W‐G., Aquifer parameter identification, J. Hydraul. Div. Am. Soc. Civ. Eng., 101HY9, 1197–1209, 1975. |
Библиографическая ссылка |
Yeh, W. W‐G., N.‐Z.Sun, An extended identifiability in aquifer parameter identification and optimal pumping test design, Water Resour. Res., 2012, 1837–1847, 1984. |
Библиографическая ссылка |
Yoon, Y. S., W. W‐G.Yeh, Parameter identification in an inhomogeneous medium with the finite element method, Soc. Pet. Eng. J., 164, 217–226, 1976. |