Автор |
Scanlon, Bridget R. |
Дата выпуска |
1992 |
dc.description |
The distribution of anthropogenic <sup>36</sup>Cl and <sup>3</sup>H was used along with numerical flow simulations to evaluate the relative importance of liquid and vapor flow in the shallow unsaturated zone of an area within the Chihuahuan Desert of Texas. Chlorine 36 is nonvolatile and is restricted to liquid phase flow, whereas tritiated water is volatile and can move in both liquid and vapor phases. Tritium penetrated 1 m deeper than <sup>36</sup>Cl, although <sup>3</sup>H fallout occurred later than that of <sup>36</sup>Cl. Deeper penetration of <sup>3</sup>H relative to that of <sup>36</sup>Cl was attributed to enhanced downward movement of <sup>3</sup>H in the vapor phase. The moisture flux calculated from the <sup>36</sup>Cl/Cl peak at 0.5‐m depth was 1.4 mm yr<sup>−1</sup>, whereas that based on the <sup>3</sup>H peak at 1.4‐m depth was 7 mm yr<sup>−1</sup>. The difference in moisture fluxes between the two tracers suggests a vapor flux of approximately 6 mm yr<sup>−1</sup>. The vapor flux hypothesis was tested using nonisothermal liquid and vapor flow simulations with the computer code SPLaSHWaTr. Simulations of 5‐day periods in the winter and summer were conducted to represent the extremes in temperature gradients. The calculated vapor flux was two to eight orders of magnitude greater than the liquid flux for the periods simulated. Predicted vapor fluxes were upward in the top 0.04 m of the unsaturated zone in the summer and winter in response to steep water potential gradients induced by surface evaporation. Below the evaporation front, from depths of 0.15 to 1 m, downward vapor fluxes in the summer were much greater than generally upward vapor fluxes in the winter. These results suggest an annual net downward vapor flux that is consistent with the chemical tracer data. |
Формат |
application.pdf |
Копирайт |
Copyright 1992 by the American Geophysical Union. |
Тема |
HYDROLOGY |
Тема |
Hydrologic scaling |
Тема |
Time series analysis |
Тема |
Anthropogenic effects |
Тема |
Soil moisture |
Тема |
Hydrology |
Тема |
Hydrology |
Тема |
Hydrology |
Тема |
Hydrology |
Название |
Evaluation of liquid and vapor water flow in desert soils based on chlorine 36 and tritium tracers and nonisothermal flow simulations |
Тип |
article |
DOI |
10.1029/91WR02200 |
Electronic ISSN |
1944-7973 |
Print ISSN |
0043-1397 |
Журнал |
Water Resources Research |
Том |
28 |
Первая страница |
285 |
Последняя страница |
297 |
Выпуск |
1 |
Библиографическая ссылка |
Allison, G. B., M. W.Hughes, The use of environmental chloride and tritium to estimate total recharge to an unconfined aquifer, Aust. J. Soil Res., 16, 181–195, 1978. |
Библиографическая ссылка |
Allison, G. B., W. J.Stone, M. W.Hughes, Recharge in karst and dune elements of a semi‐arid landscape as indicated by natural isotopes and chloride, J. Hydrol., 76, 1–26, 1985. |
Библиографическая ссылка |
Bentley, H. W., F. M.Phillips, S. N.Davis, <sup>36</sup>Cl in the terrestrial environment, Handbook of Environmental Isotope Geochemistry, 2bP.Fritz, J.‐C.Fontes, 422–475, Elsevier Science, New York, 1986. |
Библиографическая ссылка |
Biggar, J. W., D. R.Nielsen, Miscible displacement, II, Behavior of tracers, Soil Sci. Soc. Am. Proc., 26, 125–128, 1962. |
Библиографическая ссылка |
Campbell, G. S., Soil Physics With BASIC: Transport Models for Soil‐Plant Systems, 150, Elsevier, New York, 1985. |
Библиографическая ссылка |
Carslaw, H. S., J. C.Jaeger, Conduction of Heat in Solids2, 510, Oxford at the Clarendon, London, 1959. |
Библиографическая ссылка |
Conca, J. L., J.Wright, Aqueous diffusion coefficients in unsaturated materials, Mater. Res. Soc. Symp. Proc., 212, 879–884, 1991. |
Библиографическая ссылка |
deMarsily, G., Quantitative Hydrogeology, 440, Academic, San Diego, Calif., 1986. |
Библиографическая ссылка |
deVries, D. A., Thermal properties of soils, Physics of Plant EnvironmentW. R.vanWijk, 210–235, North‐Holland, Amsterdam, 1963. |
Библиографическая ссылка |
Duval, T. A., Thermonuclear tritium as a tracer for liquid and vapor transport of soil moisture through arid soils, M.S. thesis,, 81 pp.,N. M. Inst. of Min. and Technol.,Socorro,1986. |
Библиографическая ссылка |
Elmore, D., B. R.Fulton, M. R.Clover, J. R.Marsden, H. E.Gove, H.Naylor, K. H.Purser, L. R.Kilius, R. P.Beukens, A. E.Litherl, Analysis of <sup>36</sup>Cl in environmental water samples using an electrostatic accelerator, Nature, 227, 22–25, 1979. |
Библиографическая ссылка |
Elmore, D., N. J.Conard, P. W.Kubik, J.Fabryka‐Martin, Computer controlled isotope ratio measurements and data analysis, Nucl. Instrum. Methods Phys. Res., Sect. B, 5, 233–237, 1984. |
Библиографическая ссылка |
Folk, R. L., Petrology of Sedimentary Rocks, 182, Hemphill, Austin, Tex., 1974. |
Библиографическая ссылка |
Gee, G. W., M. D.Campbell, J. H.Campbell, G. S.Campbell, Rapid measurements of low soil water potentials using a water activity meter, Agron. Abstr., 211, 1990. |
Библиографическая ссылка |
Gvirtzman, H., D.Ronen, M.Magaritz, Anion exclusion during transport through the unsaturated zone, J. Hydrol., 87, 267–283, 1986. |
Библиографическая ссылка |
, International Atomic Energy Agency (IAEA), Isotope techniques in the hydrogeological assessment of potential sites for the disposal of high‐level radioactive wastes, IAEA Tech. Rep. Ser., 228chap. 7, Vienna, 1983. |
Библиографическая ссылка |
Jackson, R. D., B. A.Kimball, R. J.Reginato, F. S.Nakayama, Diurnal soil‐water evaporation: Time‐depth‐flux patterns, Soil Sci. Soc. Am. Proc., 37, 505–509, 1973. |
Библиографическая ссылка |
James, R. V., J.Rubin, Transport of chloride ion in a water‐unsaturated soil exhibiting anion exclusion, Soil Sci. Soc. Am. J., 50, 1142–1149, 1986. |
Библиографическая ссылка |
Kitching, R., W. M.Edmunds, T. R.Shearer, N. R. G.Walton, J.Jacovides, Assessment of recharge to aquifers, Bull. Sci. Hydrol., 25, 217–235, 1980. |
Библиографическая ссылка |
Knowlton, R. G., A stable isotope study of water and chloride movement in natural desert soils, Ph.D. dissertation,, 241 pp.,N. M. Inst. of Min. and Technol.,Socorro,1990. |
Библиографическая ссылка |
Knowlton, R. G., F. M.Phillips, A. R.Campbell, A stable‐isotope investigation of vapor transport during ground‐water recharge in New MexicoRep. 237, 88N. M. Water Resour. Res. Inst., Las Cruces, 1989. |
Библиографическая ссылка |
Krupp, H. K., J. W.Biggar, D. R.Nielsen, Relative flow rates of salt and water in soil, Soil Sci. Soc. Am. Proc., 36, 412–417, 1972. |
Библиографическая ссылка |
Larkin, T. J., G. W.Bomar, Climatic atlas of TexasRep. TDWR LP192, 151Tex. Dep. of Water Resour., Austin, 1983. |
Библиографическая ссылка |
Mattick, J. L., T. A.Duval, F. M.Phillips, Quantification of groundwater recharge rates in New Mexico using bomb <sup>36</sup>Cl, bomb <sup>3</sup>H and chloride as soil‐water tracersRep. 220, 184N. M. Water Resour. Res. Inst., Las Cruces, 1987. |
Библиографическая ссылка |
Milly, P. C. D., Moisture and heat transport in hysteretic, inhomogeneous porous media: A matric head‐based formulation and a numerical model, Water Resour. Res., 18, 489–498, 1982. |
Библиографическая ссылка |
Milly, P. C. D., A stimulation analysis of thermal effects on evaporation from soil, Water Resour. Res., 20, 1087–1098, 1984. |
Библиографическая ссылка |
Milly, P. C. D., P. S.Eagleson, The coupled transport of water and heat in a vertical soil column under atmospheric excitationRep. 258, 234Ralph M. Parsons Lab., Mass. Inst. of Technol., Cambridge, 1980. |
Библиографическая ссылка |
Milly, P. C. D., P. S.Eagleson, Parameterization of moisture and heat fluxes across the land surface for use in atmospheric general circulation modelsRep. 179, 226Ralph M. Parsons Lab., Mass. Inst. of Technol., Cambridge, 1982. |
Библиографическая ссылка |
Mualem, Y., A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12, 513–521, 1976. |
Библиографическая ссылка |
, Soil WaterD. R.Nielsen, R. D.Jackson, J. W.Cary, D. D.Evans, 131–138, American Society of Agronomy and Soil Science Society of America, Madison, Wis., 1972. |
Библиографическая ссылка |
Nielsen, D. R., M. T.vanGenuchten, J. W.Biggar, Water flow and solute transport processes in the unsaturated zone, Water Resour. Res., 22, 89S–108S, 1986. |
Библиографическая ссылка |
Norris, A. E., K.Wolfsberg, S. K.Gifford, H. W.Bentley, D.Elmore, Infiltration at Yucca Mountain, Nevada, traced by <sup>36</sup>Cl, Nucl. Instrum. Methods Phys. Res., Sect. B, 29, 376–379, 1987. |
Библиографическая ссылка |
Philip, J. R., D. A.deVries, Moisture movement in porous materials under temperature gradients, Eos Trans. AGU, 38, 222–232, 1957. |
Библиографическая ссылка |
Phillips, F. M., J. L.Mattick, T. A.Duval, Chlorine 36 and tritium from nuclear weapons fallout as tracers for long‐term liquid and vapor movement in desert soils, Water Resour. Res., 24, 1877–1891, 1988. |
Библиографическая ссылка |
Porter, L. K., W. D.Kemper, R. D.Jackson, B. A.Stewart, Chloride diffusion in soils as influenced by moisture content, Soil Sci. Soc. Am. Proc., 24, 460–463, 1960. |
Библиографическая ссылка |
Rose, C. W., Water transport in soil with a daily temperature wave, I, Theory and experiment, Aust. J. Soil Res., 6, 31–44, 1968a. |
Библиографическая ссылка |
Rose, C. W., Water transport in soil with a daily temperature wave, II, Analysis, Aust. J. Soil Res., 6, 45–57, 1968b. |
Библиографическая ссылка |
Scanlon, B. R., Evaluation of moisture flux from chloride data in desert soils, J. Hydrol., 128, 137–156, 1991. |
Библиографическая ссылка |
Scanlon, B. R., P. W.Kubik, P.Sharma, B. C.Richter, H. E.Gove, Bomb chlorine‐36 analysis in the characterization of unsaturated flow at a proposed radioactive waste disposal facility, Chihuahuan Desert, Texas, Nucl. Instrum. Methods Phys. Res., 52, 489–492, 1990. |
Библиографическая ссылка |
Scanlon, B. R., F. P.Wang, B. C.Richter, Field studies and numerical modeling of unsaturated flow in the Chihuahuan Desert, TexasRep. Invest. 199, 55Bur. of Econ. Geol., Univ. of Tex., Austin, 1991. |
Библиографическая ссылка |
Sophocleous, M., Analysis of water and heat flow in unsaturated‐saturated porous media, Water Resour. Res., 15, 1195–1206, 1979. |
Библиографическая ссылка |
Stephens, D. B., R.KnowltonJr., Soil water movement and recharge through sand at a semiarid site in New Mexico, Water Resour. Res., 22, 881–889, 1986. |
Библиографическая ссылка |
, U.S. Department of Agriculture, Soil Taxonomy, 754, Soil Conservation Service, Washington, D. C., 1975. |
Библиографическая ссылка |
van dePol, R. M., P. J.Wierenga, D. R.Nielsen, Solute movement in a field soil, Soil Sci. Soc. Am. J., 41, 10–13, 1977. |
Библиографическая ссылка |
vanGenuchten, M. T., A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892–898, 1980. |
Библиографическая ссылка |
vanGenuchten, M. T., W. J.Alves, Analytical solutions of the one‐dimensional advection‐dispersion solute transport equation, Tech. Bull., 1661, 151, U.S. Dep. of Agric., Washington, D. C., 1982. |
Библиографическая ссылка |
vanGenuchten, M. T., P. J.Wierenga, Mass transfer studies in sorbing porous media, II, Experimental evaluation with tritium, Soil Sci. Soc. Am. J., 41, 272–278, 1977. |
Библиографическая ссылка |
Wierenga, P. J., M. T.vanGenuchten, Solute transport through small and large unsaturated soil columns, Ground Water, 27, 35–42, 1989. |
Библиографическая ссылка |
Wierenga, P. J., M. T.vanGenuchten, F. W.Boyle, Transfer of boron and tritiated water through sandstone, J. Environ. Qual., 4, 83–87, 1975. |
Библиографическая ссылка |
Wilkinson, G. E., A.Klute, The temperature effect on the equilibrium energy status of water held by porous media, Soil Sci. Soc. Am. Proc., 26, 326–329, 1962. |