Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор McKinney, Daene C.
Автор Loucks, Daniel P.
Дата выпуска 1992
dc.description A new network design algorithm for improving the reliability of groundwater simulation model predictions is developed. The objective of the algorithm is to minimize the simulation model prediction variance by choice of new aquifer property measurement locations. This method, which uses parameter measurements to minimize prediction error, is different in concept from conventional parameter estimation or inverse methods which use state variable measurements to minimize parameter estimation error. The variance of predicted state variables, hydraulic head and contaminant concentration, is used as a measure of model prediction reliability. Prediction variance depends on the extent and quality of aquifer property measurements used to estimate simulation model parameters. Kriging is used in the first‐order uncertainty analysis to estimate the model parameters. First‐order uncertainty analysis is used in the algorithm to compute the prediction variance and select new measurement locations. A network design example is presented, the results of which show that a significant increase in simulation model prediction reliability is achieved by measuring aquifer properties at locations selected by the algorithm. The predicted mean was found to be insensitive to new measurements, while the predicted state variable variance was found to be quite sensitive to new measurements. The selection of measurement locations was found to be greatly affected by the type and extent of boundary conditions existing in the aquifer. Fixed value boundary conditions tend to reduce prediction variance in the neighborhood of new measurements and throughout the entire aquifer. Specified flux and mixed boundary conditions tend to reduce prediction variance in the neighborhood of the measurement locations, with little reduction occurring in other areas of the aquifer. The results also indicate that both the mean head and concentration are relatively insensitive to the number of data points in the network as long as there is a good estimate of the statistics of the ln (K) distribution and covariance function. This is not the case with the standard deviation of both the head and concentration which are significantly affected by the addition of data points to the network.
Формат application.pdf
Копирайт Copyright 1992 by the American Geophysical Union.
Тема HYDROLOGY
Тема Groundwater/surface water interaction
Тема Monitoring networks
Тема Stochastic hydrology
Тема Time series analysis
Тема Hydrology
Тема Hydrology
Тема Hydrology
Тема Hydrology
Название Network design for predicting groundwater contamination
Тип article
DOI 10.1029/91WR02397
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 28
Первая страница 133
Последняя страница 147
Выпуск 1
Библиографическая ссылка Ahlfeld, D. P., J. M.Mulvey, G. F.Pinder, E. F.Wood, Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory, 1, Model Development, Water Resour. Res., 243, 431–441, 1988.
Библиографическая ссылка Bard, Y., Nonlinear Parameter Estimation, Academic, San Diego, Calif., 1974.
Библиографическая ссылка Bardossy, A., I.Bogardi, Network design for the spatial estimation of environmental variables, Appl. Math. Comput., 12, 339–365, 1983.
Библиографическая ссылка Bear, J., Hydraulics of Groundwater, McGraw‐Hill, New York, 1979.
Библиографическая ссылка Bogardi, I., A.Bardossy, L.Duckstein, Multicriterion network design using geostatistics, Water Resources Res., 212, 199–208, 1985.
Библиографическая ссылка Carrera, J., F.Szidarovszky, Numerical comparison of network design algorithms for regionalized variables, Appl. Math. Comput., 16, 189–202, 1985.
Библиографическая ссылка Carrera, J., E.Usunoff, F.Szidarovszky, A method for optimal observation network design for groundwater management, J. Hydrol., 73, 147–163, 1984.
Библиографическая ссылка Cleveland, T. G., W. W.‐G.Yeh, Sampling network design for transport parameter identification, J. Water Resour. Plann. Manage. Div. Am. Soc. Civ. Eng., 1166, 37–51, 1990.
Библиографическая ссылка Cleveland, T. G., W. W‐G.Yeh, Optimal configuration and scheduling of groundwater traces tests, J. Water Resour. Plann. Manage. Div. Am. Soc. Civ. Eng., 1171, 764–783, 1991.
Библиографическая ссылка Delhomme, J. P., Kriging in the hydrosciences, Adv. Water Resour., 15, 251–266, 1978.
Библиографическая ссылка deMarsily, G., Quantitative Hydrogeology, Academic, San Diego, Calif., 1986.
Библиографическая ссылка Dettinger, M. D., J. I.Wilson, First‐order analysis of uncertainty in numerical models of groundwater flow, 1, Mathematical development, Water Resour. Res., 17, 149–161, 1981.
Библиографическая ссылка Freeze, R. A., L.Smith, G.deMarsily, J.Massmann, Some uncertainties about uncertainty, Geostatistical, Sensitivity, and Uncertainty Methods for Groundwater Flow and Radionuclide Transport ModelingB. E.Buxton, 231–260, Battelle Press, Columbus, Ohio, 1987.
Библиографическая ссылка Graham, W., D.McLaughlin, Stochastic analysis of nonstationary subsurface solute transport, 1, Unconditional moments, Water Resour. Res., 252, 215–232, 1989a.
Библиографическая ссылка Graham, W., D.McLaughlin, Stochastic analysis of nonstationary subsurface solute transport, 2, Conditional moments, Water Resour. Res., 25II, 2331–2355, 1989b.
Библиографическая ссылка Hachich, W., E. H.Vanmarcke, Probabilistic updating of pore pressure fields, J. Geotech. Eng. Div. Am. Soc. Civ. Eng., 1093, 373–387, 1983.
Библиографическая ссылка Hoeksema, R. J., P. K.Kitanidis, Comparison of gaussian conditional mean and kriging in the geostatistical solution of the inverse problem, Water Resour. Res., 216, 825–836, 1985.
Библиографическая ссылка Journel, A., C.Huijbregts, Mining Geostatistcs, Academic, San Diego, Calif., 1978.
Библиографическая ссылка Knopman, D. S., C. I.Voss, Behavior of sensitivities in the one‐dimensional advective‐dispersion equation: Implications for parameter estimation and sampling design, Water Resour. Res., 232, 253–272, 1987.
Библиографическая ссылка Knopman, D. S., C. I.Voss, Further comments on sensitivities, parameter estimation, and sampling design in one‐dimensional analysis of solute transport in porous media, Water Resour. Res., 242, 225–238, 1988.
Библиографическая ссылка Knopman, D. S., C. I.Voss, Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport, Water Resour. Res., 2510, 2245–2258, 1989.
Библиографическая ссылка Loaiciga, H. A., An optimization approach for groundwater quality monitoring network design, Water Resour. Res., 258, 1771–1782, 1989.
Библиографическая ссылка Magnuson, S., J. L.Wilson, Optimization of transmissivity measurement networks, Eos Trans. AGU, 6844, 1266, 1987.
Библиографическая ссылка Massmann, J., R. A.Freeze, Groundwater contamination from waste management sites: The interaction between risk‐based engineering design and regulatory policy, 1, Methodology, Water Resour. Res., 232, 351–367, 1987a.
Библиографическая ссылка Massmann, J., R. A.Freeze, Groundwater contamination from waste management sites: The interaction between risk‐based engineering design and regulatory policy, 2, Results, Water Resour. Res., 232, 368–380, 1987b.
Библиографическая ссылка McBratney, A. B., R.Webster, T. M.Burgess, The design of optimal sampling schemes for local estimation and mapping of regionalized variables, I, Comput. Geosci., 74, 331–334, 1981.
Библиографическая ссылка McKinney, D. C., Predicting Groundwater Contamination: Uncertainty Analysis and Network Design, Ph.D. dissertation,Cornell Univ.,Ithaca, N. Y.,1990.
Библиографическая ссылка McKinney, D. C., D. P.Loucks, Uncertainty Analysis Methods, Groundwater Modeling, Computational Methods in Subsurface HydrologyG.Gambolati, et al., Springer‐Verlag, New York, 1990.
Библиографическая ссылка McLaughlin, D. B., W. D.Graham, Design of cost‐effective programs for monitoring groundwater contamination, Integrated Design of Hydrologic Networks, IAHS Publ., 158, 231–245, 1986.
Библиографическая ссылка Meyer, P. D., E. D.BrillJr., A method for locating wells in a groundwater monitoring network under conditions of uncertainty, Water Resour. Res., 248, 1277–1282, 1988.
Библиографическая ссылка Mizell, S. A., A. J.Gutjahr, L. W.Gelhar, Stochastic analysis of spatial variability in two‐dimensional steady groundwater flow assuming stationary and nonstationary heads, Water Resour. Res., 184, 1053–1067, 1982.
Библиографическая ссылка Ripley, B. D., Spatial Statistics, John Wiley, New York, 1981.
Библиографическая ссылка Smith, L., R. A.Freeze, Stochastic analysis of steady state groundwater flow in a bounded domain, 2, Two‐dimensional simulations, Water Resour. Res., 156, 1543–1559, 1979.
Библиографическая ссылка Sun, N.‐Z., W. W.‐G.Yeh, Coupled inverse problems in groundwater modeling, 1, Sensitivity analysis and parameter identification, Water Resour. Res., 2610, 2507–2525, 1990a.
Библиографическая ссылка Sun, N.‐Z., W. W.‐G.Yeh, Coupled inverse problems in groundwater modeling, 2, Identifiability and experimental design, Water Resour. Res., 2610, 2527–2540, 1990b.
Библиографическая ссылка Wood, E. F., D. B.McLaughlin, Groundwater monitoring well redesignNWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Groundwater: Prevention, Detection, and RestorationNatl. Water Well Assoc.Houston, Tex., 1984.
Библиографическая ссылка Yeh, W. W.‐G., Review of parameter identification procedures in groundwater hydrology: The inverse problem, Water Resour. Res., 222, 95–108, 1986.
Библиографическая ссылка Zellner, A., An Introduction to Bayesian Inference in Econometrics, John Wiley, New York, 1971.

Скрыть метаданые