Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Khaleel, Raziuddin
Дата выпуска 1994
dc.description Macrodispersion in discrete colonnade network models is investigated using a series of Monte Carlo type numerical experiments. The numerical simulations consider fluid flow and advective transport through a square flow region of a two‐dimensional network of hexagonal colonnades. Macrodispersivities are calculated as a function of the scale and orientation of the square flow region within the larger, parent geometry. Particle tracking, with flux‐weighted tracer injection and monitoring, is used to generate experimental residence time distributions (RTDs). The method of moments is used to characterize the longitudinal tracer spreading. The simulated RTDs are utilized to examine the macrodispersive behavior in colonnade networks (column diameter, 1 m) with lognormally distributed fracture apertures (b, in millimeters). The network models are assumed to consist of open fractures with μ<sub>ln b</sub> = −1.945 and σ<sub>ln b</sub> = 0.896; this translates to an equivalent continuum log‐conductivity variance (σ<sub>ln K</sub><sup>2</sup>) of 3.67. Based on an ensemble average of 100 realizations, the slope for spatial variance versus scale of observation ranges from 3.15 to 3.36 m for varying orientations of the hydraulic gradient. For ensemble‐averaged data, the varying orientations appear to have little effect on the macrodispersive behavior. For single‐realization experiments, the computed macrodispersivities are directionally dependent at a length scale as large as 30 times the column diameter (and probably much beyond). The computed asymptotic and preasymptotic macrodispersivities are compared with available stochastic solutions for two‐dimensional isotropic heterogeneity in the horizontal plane. The ensemble‐based numerical data are in excellent agreement with the solutions of Dagan (1984, 1988) and Gelhar and Axness (1983). However, for individual realizations, nonergodic behavior is clearly apparent in the near‐source, evolving region of transport, and the numerical data are quite variable between realizations. The study provides important insight on applicability of stochastic continuum theories to discrete colonnade network models having σ<sub>ln K</sub><sup>2</sup> much greater than 1.
Формат application.pdf
Копирайт Copyright 1994 by the American Geophysical Union.
Тема HYDROLOGY
Тема Groundwater/surface water interaction
Тема Stochastic hydrology
Тема PHYSICAL PROPERTIES OF ROCKS
Тема Fracture and flow
Тема Transport properties
Название Scale and directional dependence of macrodispersivities in colonnade networks
Тип article
DOI 10.1029/94WR01973
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 30
Первая страница 3337
Последняя страница 3355
Выпуск 12
Библиографическая ссылка Baca, R. G., R. C.Arnett, D. W.Langford, Modeling of fluid flow in fractured‐porous rock masses by finite‐element techniques, Int. J. Numer. Methods Fluids, 4, 337–348, 1984.
Библиографическая ссылка Barry, D. A., J.Coves, G.Sposito, On the Dagan model of solute transport in groundwater: Application to the Borden site, Water Resour. Res., 24, 1805–1817, 1988.
Библиографическая ссылка Bellin, A., P.Salandin, A.Rinaldo, Simulation of dispersion in heterogeneous porous formations: Statistics, first‐order theories, convergence of computations, Water Resour. Res., 28, 2211–2227, 1992.
Библиографическая ссылка Cacas, M. C., E.Ledoux, G.deMarsily, A.Barbreau, P.Calmels, B.Gaillard, R.Margritta, Modeling fracture flow with a discrete fracture network: Calibration and validation, 2, The transport model, Water Resour. Res., 263, 491–500, 1990.
Библиографическая ссылка Chin, D. A., T.Wang, An investigation of the validity of first‐order stochastic dispersion theories in isotropic porous media, Water Resour. Res., 28, 1531–1542, 1992.
Библиографическая ссылка Dagan, G., Solute transport in heterogeneous porous formations, J. Fluid Mech., 145, 151–177, 1984.
Библиографическая ссылка Dagan, G., Time‐dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers, Water Resour. Res., 24, 1491–1500, 1988.
Библиографическая ссылка Dagan, G., Dispersion of a passive solute in non‐ergodic transport by steady velocity fields in heterogeneous formations, J. Fluid Mech., 233, 197–210, 1991.
Библиографическая ссылка Desbarats, A. J., R. M.Srivastava, Geostatistical characterization of groundwater flow parameters in a simulated aquifer, Water Resour. Res., 27, 687–698, 1991.
Библиографическая ссылка England, R. L., N. W.Kline, K. J.Ekblad, R. G.Baca, MAGNUM‐2D Computer Code: Users GuideRep. RHO‐BW‐CR‐143 PRockwell Hanford Operations, Richland, Wash., 1985.
Библиографическая ссылка Freyberg, D. L., A natural gradient experiment on solute transport in a sand aquifer, 2, Spatial moments and the advection and dispersion of nonreactive tracers, Water Resour. Res., 22, 2031–2046, 1986.
Библиографическая ссылка Frind, E. O., E. A.Sudicky, S. L.Schellenberg, Microscale modelling in the study of plume evolution in heterogeneous media, Stoch. Hydrol. Hydraul., 1, 263–276, 1987.
Библиографическая ссылка Garabedian, S. P., D. R.Le Blanc, L. W.Gelhar, M. A.Celia, Large scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 2, Analysis of spatial moments for a nonreactive tracer, Water Resour. Res., 27, 911–924, 1991.
Библиографическая ссылка Gelhar, L. W., C. L.Axness, Three‐dimensional analysis of macrodispersion in a stratified aquifer, Water Resour. Res., 19, 161–180, 1983.
Библиографическая ссылка Gelhar, L. W., A.Mantoglou, C.Welty, K. R.Rehfeldt, A review of field‐scale physical solute transport processes in saturated and unsaturated porous mediaEPRI Rep. EA‐4190Electr. Power Res. Inst., Palo Alto, Calif., 1985.
Библиографическая ссылка Khaleel, R., Scale dependence of continuum models for fractured basalts, Water Resour. Res., 25, 1847–1855, 1989.
Библиографическая ссылка Khaleel, R., Equivalent porosity estimates for colonnade networks, Water Resour. Res., 28, 2783–2791, 1992.
Библиографическая ссылка Long, J. C. S., P. A.Witherspoon, The Relationship of the degree of interconnection to permeability of fracture networks, J. Geophys. Res., 90B4, 3087–3098, 1985.
Библиографическая ссылка Long, J. C. S., J. S.Remer, C. R.Wilson, P. A.Witherspoon, Porous media equivalents for networks of discontinuous fractures, Water Resour. Res., 18, 645–658, 1982.
Библиографическая ссылка Moreno, L., Y. W.Tsang, C. F.Tsang, F. V.Hale, I.Neretnieks, Flow and tracer transport in a single fracture: A stochastic model and its relation to some field observations, Water Resour. Res., 2412, 2033–2048, 1988.
Библиографическая ссылка Neuman, S. P., Y. K.Zhang, A quasi‐linear theory of non‐Fickian and Fickian subsurface dispersion, 1, Theoretical analysis with application to isotropic media, Water Resour. Res., 26, 887–902, 1990.
Библиографическая ссылка Neuman, S. P., C. L.Winter, C. M.Newman, Stochastic theory of field‐scale Fickian dispersion in anisotropic porous media, Water Resour. Res., 23, 453–466, 1987.
Библиографическая ссылка Quinodoz, H. A. M., A. J.Valocchi, Macrodispersion in heterogeneous aquifers: Numerical experimentsConference on Transport and Mass Exchange Processes in Sand and Gravel Aquifers: Field and Modeling StudiesAtomic Energy of Canada Ltd.Ottawa, Ont.Oct. 1–4, 1990.
Библиографическая ссылка Rajaram, H., L. W.Gelhar, Three‐dimensional spatial moments analysis of the Borden tracer test, Water Resour. Res., 27, 1239–1251, 1991.
Библиографическая ссылка Smith, L., F. W.Schwartz, Mass transport, 1, A stochastic analysis of macroscopic dispersion, Water Resour. Res., 16, 303–313, 1980.
Библиографическая ссылка Smith, L., F. W.Schwartz, An analysis of the influence of fracture geometry on mass transport in fractured media, Water Resour. Res., 20, 1241–1252, 1984.
Библиографическая ссылка Sposito, G., W. A.Jury, V. K.Gupta, Fundamental problems in the stochastic convection‐dispersion model of solute transport in aquifers and field soils, Water Resour. Res., 22, 77–86, 1986.
Библиографическая ссылка Sudicky, E. A., A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process, Water Resour. Res., 22, 2069–2082, 1986.
Библиографическая ссылка Tompson, A. F. B., L. W.Gelhar, Numerical simulation of solute transport in three‐dimensional, randomly heterogeneous porous media, Water Resour. Res., 26, 2541–2562, 1990.
Библиографическая ссылка , U.S. Department of Energy, Environmental Assessment: Reference Repository Location, Hanford Site, WashingtonRep. DOE/RW‐0070, Washington, D. C., 1986.

Скрыть метаданые