Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Wangen, Magnus
Автор Halvorsen, Gotskalk
Дата выпуска 1996
dc.description The fluid flow interaction between a two‐dimensional rectangular fracture and its surrounding isotropic permeable and homogeneous rock is studied where the surrounding rock is of infinite extent. The interaction is found to depend on two numbers: the aspect ratio of the fracture and the ratio of the fracture permeability and the rock permeability. Furthermore, the interaction is one of two types, one where the fracture is charged and discharged from its sides and another where the charging/discharging takes place through its ends. Approximate solutions that describe these regimes are given. The squared‐width fracture permeability is considered, and we show that the interaction of the fracture and the rock is then characterized by a certain aspect ratio. Fractures with aspect ratios smaller than the characteristic aspect ratio are charged/discharged through their short ends, and fractures with aspect ratios larger than the characteristic aspect ratio are charged/discharged through their long sides. A fracture is charged/discharged equally through the short ends and the long sides at characteristic aspect ratio, and the velocity at the center of the fracture is largest for this particular aspect ratio.
Формат application.pdf
Копирайт Copyright 1996 by the American Geophysical Union.
Тема HYDROLOGY
Тема Groundwater transport
Тема PHYSICAL PROPERTIES OF ROCKS
Тема Fracture and flow
Название Interaction of a Rectangular Fracture with the Host Rock
Тип article
DOI 10.1029/96WR02592
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 32
Первая страница 3611
Последняя страница 3616
Выпуск 12
Библиографическая ссылка Barenblatt, G. I., I. P.Zheltov, N.Kochina, Basic concepts in the theory of seepage of homogenous liquids in fissured rocks, Prikl. Mat. Mekh., 245, 852–864, 1960.
Библиографическая ссылка Brown, S. R., Simple mathematical model of a rough fracture, J. Geophys. Res., 100B4, 5941–5952, 1995.
Библиографическая ссылка Brown, S. R., H. W.Stockman, S. J.Reeves, Applicability of the Reynolds equation for modeling fluid flow between rough surfaces, Geophys. Res. Lett., 2218, 2537–2540, 1995.
Библиографическая ссылка Carrier, G. F., M.Krook, C. E.Pearson, Functions of a Complex Variable, 428–432, McGraw‐Hill, New York, 1966.
Библиографическая ссылка Carslaw, H. S., J. C.Jaeger, Conduction of Heat in Solids2, 427–428, Oxford Univ. Press, New York, 1959.
Библиографическая ссылка Gutfraind, R., A.Hansen, Study of fracture permeability using lattice gas automata, Transp. Porous Media, 18, 131–145, 1995.
Библиографическая ссылка , Statistical Models for the Fracture of Disorded MediaH. J.Hermann, S.Roux, chap. 2, Elsevier, New York, 1990.
Библиографическая ссылка Huyakorn, P. S., G. F.Pinder, Computational Methods in Subsurface Flowchap. 6, Academic, San Diego, Calif., 1983.
Библиографическая ссылка Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Methodchap. 1, Studentlitteratur, Lund, Sweden, 1987.
Библиографическая ссылка Sahimi, M., Flow phenomena in rocks: From continuum models to fractals, perculation, cellular automata and simulated annealing, Rev. Mod. Phys., 65, 1393–1534, 1993.
Библиографическая ссылка Sahimi, M., Applications of Perculation Theorychap. 4, Taylor and Francis, Bristol, Pa., 1994.
Библиографическая ссылка Turcotte, D. L., G.Schubert, Geodynamics, 232–234, John Wiley, New York, 1982.

Скрыть метаданые