| Автор | Wangen, Magnus |
| Автор | Halvorsen, Gotskalk |
| Дата выпуска | 1996 |
| dc.description | The fluid flow interaction between a two‐dimensional rectangular fracture and its surrounding isotropic permeable and homogeneous rock is studied where the surrounding rock is of infinite extent. The interaction is found to depend on two numbers: the aspect ratio of the fracture and the ratio of the fracture permeability and the rock permeability. Furthermore, the interaction is one of two types, one where the fracture is charged and discharged from its sides and another where the charging/discharging takes place through its ends. Approximate solutions that describe these regimes are given. The squared‐width fracture permeability is considered, and we show that the interaction of the fracture and the rock is then characterized by a certain aspect ratio. Fractures with aspect ratios smaller than the characteristic aspect ratio are charged/discharged through their short ends, and fractures with aspect ratios larger than the characteristic aspect ratio are charged/discharged through their long sides. A fracture is charged/discharged equally through the short ends and the long sides at characteristic aspect ratio, and the velocity at the center of the fracture is largest for this particular aspect ratio. |
| Формат | application.pdf |
| Копирайт | Copyright 1996 by the American Geophysical Union. |
| Тема | HYDROLOGY |
| Тема | Groundwater transport |
| Тема | PHYSICAL PROPERTIES OF ROCKS |
| Тема | Fracture and flow |
| Название | Interaction of a Rectangular Fracture with the Host Rock |
| Тип | article |
| DOI | 10.1029/96WR02592 |
| Electronic ISSN | 1944-7973 |
| Print ISSN | 0043-1397 |
| Журнал | Water Resources Research |
| Том | 32 |
| Первая страница | 3611 |
| Последняя страница | 3616 |
| Выпуск | 12 |
| Библиографическая ссылка | Barenblatt, G. I., I. P.Zheltov, N.Kochina, Basic concepts in the theory of seepage of homogenous liquids in fissured rocks, Prikl. Mat. Mekh., 245, 852–864, 1960. |
| Библиографическая ссылка | Brown, S. R., Simple mathematical model of a rough fracture, J. Geophys. Res., 100B4, 5941–5952, 1995. |
| Библиографическая ссылка | Brown, S. R., H. W.Stockman, S. J.Reeves, Applicability of the Reynolds equation for modeling fluid flow between rough surfaces, Geophys. Res. Lett., 2218, 2537–2540, 1995. |
| Библиографическая ссылка | Carrier, G. F., M.Krook, C. E.Pearson, Functions of a Complex Variable, 428–432, McGraw‐Hill, New York, 1966. |
| Библиографическая ссылка | Carslaw, H. S., J. C.Jaeger, Conduction of Heat in Solids2, 427–428, Oxford Univ. Press, New York, 1959. |
| Библиографическая ссылка | Gutfraind, R., A.Hansen, Study of fracture permeability using lattice gas automata, Transp. Porous Media, 18, 131–145, 1995. |
| Библиографическая ссылка | , Statistical Models for the Fracture of Disorded MediaH. J.Hermann, S.Roux, chap. 2, Elsevier, New York, 1990. |
| Библиографическая ссылка | Huyakorn, P. S., G. F.Pinder, Computational Methods in Subsurface Flowchap. 6, Academic, San Diego, Calif., 1983. |
| Библиографическая ссылка | Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Methodchap. 1, Studentlitteratur, Lund, Sweden, 1987. |
| Библиографическая ссылка | Sahimi, M., Flow phenomena in rocks: From continuum models to fractals, perculation, cellular automata and simulated annealing, Rev. Mod. Phys., 65, 1393–1534, 1993. |
| Библиографическая ссылка | Sahimi, M., Applications of Perculation Theorychap. 4, Taylor and Francis, Bristol, Pa., 1994. |
| Библиографическая ссылка | Turcotte, D. L., G.Schubert, Geodynamics, 232–234, John Wiley, New York, 1982. |