Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Maier, Holger R.
Автор Dandy, Graeme C.
Дата выпуска 1996
dc.description This paper presents the use of artificial neural networks (ANNs) as a viable means of forecasting water quality parameters. A review of ANNs is given, and a case study is presented in which ANN methods are used to forecast salinity in the River Murray at Murray Bridge (South Australia) 14 days in advance. It is estimated that high salinity levels in the Murray cause $US 22 million damage per year to water users in Adelaide. Previous studies have shown that the average salinity of the water supplied to Adelaide could be reduced by about 10% if pumping from the Murray were to be scheduled in an optimal manner. This requires forecasts of salinity several weeks in advance. The results obtained were most promising. The average absolute percentage errors of the independent 14‐day forecasts for four different years of data varied from 5.3% to 7.0%. The average absolute percentage error obtained as part of a real‐time forecasting simulation for 1991 was 6.5%.
Формат application.pdf
Копирайт Copyright 1996 by the American Geophysical Union.
Тема HYDROLOGY
Тема Surface water quality
Тема Stochastic hydrology
Тема MATHEMATICAL GEOPHYSICS
Тема 3210
Название The Use of Artificial Neural Networks for the Prediction of Water Quality Parameters
Тип article
DOI 10.1029/96WR03529
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 32
Первая страница 1013
Последняя страница 1022
Выпуск 4
Библиографическая ссылка Baum, E. B., D.Haussler, What size net gives valid generalization?, Neural Comput., 1, 151–160, 1989.
Библиографическая ссылка Box, G. E. P., D. R.Cox, An analysis of transformations, J. R. Statistic. Soc. B, 26, 211–243, 1964.
Библиографическая ссылка Box, G. E. P., G. M.Jenkins, Time Series Analysis, Forecasting and Control, 553, Holden‐Day, Merrifield, Va., 1976.
Библиографическая ссылка Burke, L. I., Introduction to artificial neural systems for pattern recognition, Comput. Oper. Res., 18(2), 211–220, 1991.
Библиографическая ссылка Burke, L. I., J. P.Ignizio, Neural networks and operations research: An overview, Comput. Oper. Res., 19(3/4), 179–189, 1992.
Библиографическая ссылка Chakraborty, K., K.Mehrotra, C. K.Mohan, S.Ranka, Forecasting the behaviour of multivariate time series using neural networks, Neural Networks, 5, 961–970, 1992.
Библиографическая ссылка Dandy, G. C., P. D.Crawley, Optimization of multiple reservoir systems including salinity effects, Water Resour. Res., 28(4), 979–990, 1992.
Библиографическая ссылка Daniell, T. M., Neural networks—Applications in hydrology and water resources engineeringInternational Hydrology and Water Resources SymposiumInst. of Eng.Perth, AustraliaOctober 2–4, 1991.
Библиографическая ссылка DeSilets, L., B.Golden, Q.Wang, R.Kumar, Predicting salinity in the Chesapeake Bay using backpropagation, Comput. Oper. Res., 19(3/4), 277–285, 1992.
Библиографическая ссылка , Dwyer Leslie Pty. Ltd0.,The economic impacts of salinised water supply, working papers E and F ofThe River Murray Water Quality Management Study, Melbourne, Australia,Nov.1984.
Библиографическая ссылка Fahlman, S. E., C.Lebiere, The cascade‐correlation learning architecture, Advances in Neural Information Processing Systems 2, D.Touretzky, 524–532, Morgan Kaufmann, San Mateo, Calif., 1990.
Библиографическая ссылка Haltiner, J. P., J. D.Salas, Short‐term forecasting of snowmelt runoff using ARMAX models, Water Resour. Bull., 24(5), 1083–1089, 1988.
Библиографическая ссылка Hecht‐Nielsen, R., Kolmogorov's mapping neural network existence theoremFirst IEEE International Joint Conference on Neural NetworksInst. of Electr. and Electron. Eng.San Diego, Calif.June 21–24, 1987.
Библиографическая ссылка Hecht‐Nielsen, R., Neurocomputing: Picking the human brain, IEEE Spectrum, 25(3), 36–41, 1988.
Библиографическая ссылка Hipel, K. W., Time series analysis in perspective, Water Resour. Bull., 21(4), 609–624, 1985.
Библиографическая ссылка Hubick, K. T., Artificial Neural Networks in Australia, 131, Dep. of Ind., Technol. and Commerce, Canberra, Aust., 1992.
Библиографическая ссылка Irvine, K. N., A. J.Eberhardt, Multiplicative, seasonal ARIMA models for Lake Erie and Lake Ontario water levels, Water Resour. Bull., 28(2), 385–396, 1992.
Библиографическая ссылка Karunanithi, N., W. J.Grenney, D.Whitley, K.Bovee, Neural networks for river flow prediction, J. Comput. Civ. Eng., 1(2), 201–220, 1994.
Библиографическая ссылка Kudrycki, T. P., Neural network implementation of a medical diagnosis expert system, Master's thesis,Coll. of Eng., Univ. of Cincinnati, Cincinnati, Ohio, 1988.
Библиографическая ссылка Lachtermacher, G., J. D.Fuller, Backpropagation in hydrological time series forecastingin Stochastic and Statistical Methods in Hydrology and Environmental Engineering, 3, Time Series Analysis in Hydrology and Environmental Engineering, K. W.Hipel, A. I.McLeod, U. S.Panu, V. P.Singh, 229–242, Kluwer Acad., Norwell, Mass., 1994.
Библиографическая ссылка Lewis, P. A. W., Some simple models for continuous variate time series, Water Resour. Bull., 21(4), 635–644, 1985.
Библиографическая ссылка Lippmann, R. P., An introduction to computing with neural nets,IEEE ASSP Mag., April,4–22, 1987.
Библиографическая ссылка Maier, H. R., G. C.Dandy, Comparison of the Box‐Jenkins procedure with artificial neural network methods for univariate time series modellingRes. Rep. R127Dep. of Civ. and Environ. Eng., Univ. of Adelaide, Adelaide, Australia, 1995.
Библиографическая ссылка Maren, A., C.Harston, R.Pap, Handbook of Neural Computing Applications, 448, Academic, San Diego, Calif., 1990.
Библиографическая ссылка , NeuralWare, Inc., Neural Computing, NeuralWorks Professional II/Plus and NeuralWorks Explorer, 360, Pittsburgh, Pa., 1991.
Библиографическая ссылка Ranjithan, S., J. W.Eheart, J. H.GarrettJr., Neural network‐based screening for groundwater reclamation under uncertainty, Water Resour. Res., 29(3), 563–574, 1993.
Библиографическая ссылка Rogers, L. L., F. U.Dowla, Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling, Water Resour. Res., 30(2), 457–481, 1994.
Библиографическая ссылка Rumelhart, D. E., G. E.Hinton, R. J.Williams, Learning internal representations by error propagation, Parallel Distributed Processing, 1, chap. 8D. E.Rumelhart, J. L.McClelland, MIT Press, Cambridge, Mass., 1986.
Библиографическая ссылка Salas, J. D., G. Q.TabioasIII, P.Bartolini, Approaches to multivariate modeling of water resources time series, Water Resour. Bull., 21(4), 683–708, 1985.
Библиографическая ссылка Schizas, C. N., C. S.Pattichis, S. C.Michaelides, Forecasting minimum temperature with short time‐length data using artificial neural networks, Neural Network World, 4(2), 219–230, 1994.
Библиографическая ссылка Sietsma, J., R. J. F.Dow, Creating artificial neural networks that generalize, Neural Networks, 4, 67–79, 1991.
Библиографическая ссылка Tang, Z., C.deAlmeida, P. A.Fishwick, Time series forecasting using neural networks vs. Box‐Jenkins methodology, Simulation, 57(5), 303–310, 1991.
Библиографическая ссылка Thompstone, R. M., K. W.Hipel, A. I.McLeod, Forecasting quarter‐monthly riverflow, Water Resour. Bull., 21(5), 731–741, 1985.
Библиографическая ссылка Tong, H., B.Thanoon, G.Gudmundsson, Threshold time series modeling of two Icelandic riverflow systems, Water Resour. Bull., 21(4), 721–730, 1985.
Библиографическая ссылка Vemuri, V., Artificial neural networks: An introduction, Artificial Neural Networks: Theoretical Concepts, V.Vemuri, 1–12, Comput. Soc. Press, Inst. of Electr. and Electron. Eng., N. Y., 1988.
Библиографическая ссылка , Water Studies Pty. Ltd.,River Murray flow model, vol.1,summary rep. 92\12, Brisbane, Australia, 1992.
Библиографическая ссылка Weigend, A. S., D. E.Rumelhart, B. A.Huberman, Predicting the future: A connectionist approach, Int. J. Neural Syst., 1(3), 193–209, 1990.
Библиографическая ссылка Windsor, C. G., A. H.Harker, Multi‐variate financial index prediction—A neural network study, International Neural Network Conference, 1, Kluwer Acad., Norwell, Mass., 1990.
Библиографическая ссылка , World Health Organisation, Guidelines for Drinking Water Quality, Geneva, 1984.
Библиографическая ссылка Young, P. C., Time‐variable parameter and trend estimation in non‐stationary economic time series, J. Forecasting, 13, 179–210, 1994.

Скрыть метаданые