| Автор | Clothier, Brent E. |
| Автор | Magesan, G. N. |
| Автор | Heng, Lee |
| Автор | Vogeler, Iris |
| Дата выпуска | 1996 |
| dc.description | In situ observations of the resident concentration and penetration of reactive chemical underneath a disc permeameter are used to infer the adsorption isotherm that characterizes soil‐solution exchange in two structured soils. In permeameters set to the unsaturated head of −40 mm, the use of the dual tracers of inert bromide and reactive <sup>35</sup>S, in two contrasting soils, enabled resolution of their sulfate adsorption isotherms. In Manawatu fine sandy loam, a mobile‐immobile water soil, measurements of the resident concentration of <sup>35</sup>S and Br<sup>−</sup> under the disc showed sulfate to be only weakly adsorbed. However, an analytical solution for the one‐dimensional dispersive entry of reactive chemical into soil indicated that for any degree of adsorption,substantial depths of infiltration (≫200–300 mm) would be required for the adsorbed concentration (S, mol kg<sup>−1</sup>) to reach equilibrium with the concentration of the influent solution (c, mol L<sup>−1</sup>). But this same equation showed that under the disc, the retardation of the reactive chemical (<sup>35</sup>S) behind the inert tracer (Br<sup>−</sup>) could be used to infer the strength of the adsorption exchange. When carried out at two different concentrations, this retardation procedure can be used to infer the nonlinear Freundlich isotherm of exchange. In the Ramiha silt loam, a fully mobile water soil, different retardations were observed during concurrent unsaturated infiltration of Br<sup>−</sup> and labeled sulfate at 20 μmol L<sup>−1</sup> and at 2 mmol L<sup>−1</sup> SO<sub>4</sub><sup>2−</sup>. The isotherm was found to be S=2.3c<sup>0.7</sup>. This is less than the S=3.0c<sup>0.53</sup> measured by the standard batch procedure on saturated 1∶5 soil solution samples. |
| Формат | application.pdf |
| Копирайт | Copyright 1996 by the American Geophysical Union. |
| Тема | HYDROLOGY |
| Тема | Instruments and techniques: modeling |
| Тема | Vadose zone |
| Тема | Groundwater quality |
| Название | In Situ Measurement of the Solute Adsorption Isotherm Using a Disc Permeameter |
| Тип | article |
| DOI | 10.1029/96WR03616 |
| Electronic ISSN | 1944-7973 |
| Print ISSN | 0043-1397 |
| Журнал | Water Resources Research |
| Том | 32 |
| Первая страница | 771 |
| Последняя страница | 778 |
| Выпуск | 4 |
| Библиографическая ссылка | Abdalla, N. A., B.Lear, Determination of inorganic bromide in soils and plant tissues with a bromide selective‐ion electrode, Commun. Soil Sci. Plant Anal., 6, 489–494, 1975. |
| Библиографическая ссылка | Bolan, N. S., D. R.Scotter, J. K.Syers, R. W.Tillman, The effect of adsorption on sulfate leaching, Soil Sci. Soc. Am. J., 50, 1419–1424, 1986. |
| Библиографическая ссылка | Bolt, G. H., Movement of solutes in soil: Principles of adsorption/ exchange chromatography, Soil Chemistry: Part B, Physico‐chemical Models, G. H.Bolt, 285–348, Elsevier Sci., New York, 1979. |
| Библиографическая ссылка | Clothier, B. E., M. B.Kirkham, J. E.MacLean, In situ measurement of the effective transport volume for solute moving through soil, Soil Sci. Soc. Am. J., 56, 733–736, 1992. |
| Библиографическая ссылка | Clothier, B. E., S. R.Green, H.Katou, Multidimensional infiltration: Points, furrows, basins, wells and discs, Soil Sci. Soc. Am. J., 59, 286–292, 1995a. |
| Библиографическая ссылка | Clothier, B. E., L. K.Heng, G. N.Magesan, I.Vogeler, The measured mobile‐water content of an unsaturated soil as a function of hydraulic regime, Aust. J. Soil. Res., 33, 397–414, 1995b. |
| Библиографическая ссылка | Gaston, L. A., R. S.Mansell, H. M.Selim, Predicting removal of major cations and anions during acid infiltration: Model evaluation, Soil Sci. Soc. Am. J., 56, 944–950, 1992. |
| Библиографическая ссылка | Jaynes, D. B., S. D.Logsdon, R.Horton, Field method for measuring mobile/immobile water content and solute transfer rate coefficient, Soil Sci. Soc. Am. J., 59, 352–356, 1995. |
| Библиографическая ссылка | Johnson, C. M., H.Nishita, Micro‐estimation of sulfur in plant materials, soils and irrigation waters, Analytical Chem., 24, 736–742, 1952. |
| Библиографическая ссылка | Magesan, G. N., I.Vogeler, D. R.Scotter, B. E.Clothier, R. W.Tillman, Solute movement through two unsaturated soils, Aust. J. Soil Res., 33, 585–596, 1995. |
| Библиографическая ссылка | Marsh, K. B., R. W.Tillman, J. K.Syers, Charge relationships of sulfate adsorption by soils, Soil Sci. Soc. Am. J., 51, 318–323, 1987. |
| Библиографическая ссылка | Parfitt, R. L., Anion adsorption by soils and soil materials, Adv. Agron., 30, 1–50, 1978. |
| Библиографическая ссылка | Patterson, M. S., R. C.Greene, Measurement of low energy beta‐emitters in aqueous solution by liquid scintillation counting of emulsions, Anal. Chem., 37, 854–857, 1965. |
| Библиографическая ссылка | Perroux, K. M., I.White, Designs for disc permeameters, Soil Sci. Soc. Am. J., 52, 1205–1215, 1988. |
| Библиографическая ссылка | , Advances in measurement of soil physical properties: Bringing theory into practice, Soil Sci. Soc. Am. Special Publ., 30G. C.Topp, W. D.Reynolds, R. E.Green, 288, 1992. |
| Библиографическая ссылка | vanGenuchten, M. T., andP. J.Wierenga, Solute dispersion coefficients and retardation factors, in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods,, Am. Soc. Agron. Monogr., 9,2, pp. 1025–1054, 1986. |
| Библиографическая ссылка | Wallis, M. G., D. J.Horne, Soil water repellency, Adv. Soil Sci., 20, 91–146, 1992. |