Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Moench, Allen F.
Автор Kisiel, Chester C.
Дата выпуска 1970
dc.description A linear model that permits calculation of recharge to the water table from a source of finite width and infinite length uses water level measurements made in an observation well near the source and independently estimated aquifer constants. The method requires determination of the input given the output (water level measurements) and the impulse response as a function of space and time. The latter is derived from the linear equations of groundwater motion for the particular geometry of this study. The input is obtained from the discrete form of the convolution integral by using the synthetic division method and is then summed over the appropriate time period to obtain total recharge. For the particular recharge event studies, results agree satisfactorily with an independent estimate of recharge and demonstrate that the convolution relation has practical application to groundwater flow problems.
Формат application.pdf
Копирайт Copyright 1970 by the American Geophysical Union.
Название Application of the Convolution Relation to Estimating Recharge from an Ephemeral Stream
Тип article
DOI 10.1029/WR006i004p01087
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 6
Первая страница 1087
Последняя страница 1094
Выпуск 4
Библиографическая ссылка Eagleson, P. S., R.Mejia‐R, F.March, Computation of optimum realizable unit hydrographs, Water Resour. Res., 24, 755–764, 1966.
Библиографическая ссылка Glover, R. E., Mathematical derivations as pertain to groundwater recharge,, 81 pp.,Agricultural Research Service. U. S. Department of Agriculture,Fort Collins, Colorado, mimeo,1961.
Библиографическая ссылка Marino, M. A., Hele‐Shaw model study of the growth and decay of groundwater ridges, J. Geophys. Res., 724, 1195–1205, 1967.
Библиографическая ссылка Polubarinova‐Kochina, P. Ya., Theory of Ground Water MovementR. J. M.deWiest, 613, Princeton University Press, Princeton, New Jersey, 1962.
Библиографическая ссылка Schwarz, R. J., and Bernard Friedland, Linear Systems, 521, McGraw‐Hill, New York, 1965.

Скрыть метаданые