| Автор | Guymon, G. L. |
| Автор | Scott, V. H. |
| Автор | Herrmann, L. R. |
| Дата выпуска | 1970 |
| dc.description | The two‐dimensional diffusion‐convection equation, together with the appropriate auxiliary conditions, is used to describe approximately the motion of dissolved constituents in porous media flow, dispersion of pollutants in streams and estuaries, energy transfer in reservoirs, and other natural transport processes. The two‐dimensional diffusion‐convection equation, with an assumed set of auxiliary conditions, is converted to a variational principle for systems that do not involve mixed partials. The variational principle is in turn solved by the Ritz procedure by dividing the domain of interest into an arbitrary number of finite triangular elements. Within each element the unknown function states are represented by a first order space polynomial. The resulting system of first order linear equations is then solved by numerical differentiation using the Adams‐Moulton multistep predictor‐corrector method. |
| Формат | application.pdf |
| Копирайт | Copyright 1970 by the American Geophysical Union. |
| Название | A General Numerical Solution of the Two‐Dimensional Diffusion‐Convection Equation by the Finite Element Method |
| Тип | article |
| DOI | 10.1029/WR006i006p01611 |
| Electronic ISSN | 1944-7973 |
| Print ISSN | 0043-1397 |
| Журнал | Water Resources Research |
| Том | 6 |
| Первая страница | 1611 |
| Последняя страница | 1617 |
| Выпуск | 6 |
| Библиографическая ссылка | Bachmat, Y., J.Bear, The general equations of hydrodynamic dispersion in homogeneous, isotropic, porous mediums, J. Geophys. Res., 6912, 2561–2567, 1964. |
| Библиографическая ссылка | Conte, S. D., Elementary Numerical Analysis, 278, McGraw‐Hill, New York, 1965. |
| Библиографическая ссылка | Courant, R., D.Hilbert, Methods of Mathematical Physics, 1, 561, Interscience, New York, 1966. |
| Библиографическая ссылка | Forsythe, G. E., W. R.Wasow, Finite‐Difference Methods for Partial Differential Equations, John Wiley, New York, 1967. |
| Библиографическая ссылка | Guymon, G. L., A finite element solution of the one‐dimensional diffusion‐convection equation, Water Resour. Res., 61, 204–210, 1970. |
| Библиографическая ссылка | Leeds, J. V., Mathematics of stream and estuary problems, Rice Univ. Stud., 522, spring, 1966. |
| Библиографическая ссылка | Price, H. S., J. C.Cavendish, R. S.Varga, Numerical methods of higher‐order accuracy for diffusion‐convection equations, J. Soc. Petrol. Eng., 83, 293–300, 1968. |
| Библиографическая ссылка | Shamir, U. Y., D. R. F.Harleman, Numerical and analytical solutions of dispersion problems in homogeneous and layered aquifersMIT Hydrodyn. Rep. 89, Cambridge, MassachusettsMay, 1966. |
| Библиографическая ссылка | Shamir, U. Y., D. R. F.Harleman, Numerical solutions for dispersion in porous mediums, Water Resources Res., 32, 557–581, 1967. |
| Библиографическая ссылка | Stone, H. L., P. L. T.Brian, Numerical solution of convective transport problems, J. Amer. Inst. Chem. Eng., 95, 681–688, 1963. |
| Библиографическая ссылка | Zienkiewicz, O., Y. K.Cheung, The Finite Element Method in Structural and Continuum Mechanics, 272, McGraw‐Hill, New York, 1967. |