Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Guymon, G. L.
Автор Scott, V. H.
Автор Herrmann, L. R.
Дата выпуска 1970
dc.description The two‐dimensional diffusion‐convection equation, together with the appropriate auxiliary conditions, is used to describe approximately the motion of dissolved constituents in porous media flow, dispersion of pollutants in streams and estuaries, energy transfer in reservoirs, and other natural transport processes. The two‐dimensional diffusion‐convection equation, with an assumed set of auxiliary conditions, is converted to a variational principle for systems that do not involve mixed partials. The variational principle is in turn solved by the Ritz procedure by dividing the domain of interest into an arbitrary number of finite triangular elements. Within each element the unknown function states are represented by a first order space polynomial. The resulting system of first order linear equations is then solved by numerical differentiation using the Adams‐Moulton multistep predictor‐corrector method.
Формат application.pdf
Копирайт Copyright 1970 by the American Geophysical Union.
Название A General Numerical Solution of the Two‐Dimensional Diffusion‐Convection Equation by the Finite Element Method
Тип article
DOI 10.1029/WR006i006p01611
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 6
Первая страница 1611
Последняя страница 1617
Выпуск 6
Библиографическая ссылка Bachmat, Y., J.Bear, The general equations of hydrodynamic dispersion in homogeneous, isotropic, porous mediums, J. Geophys. Res., 6912, 2561–2567, 1964.
Библиографическая ссылка Conte, S. D., Elementary Numerical Analysis, 278, McGraw‐Hill, New York, 1965.
Библиографическая ссылка Courant, R., D.Hilbert, Methods of Mathematical Physics, 1, 561, Interscience, New York, 1966.
Библиографическая ссылка Forsythe, G. E., W. R.Wasow, Finite‐Difference Methods for Partial Differential Equations, John Wiley, New York, 1967.
Библиографическая ссылка Guymon, G. L., A finite element solution of the one‐dimensional diffusion‐convection equation, Water Resour. Res., 61, 204–210, 1970.
Библиографическая ссылка Leeds, J. V., Mathematics of stream and estuary problems, Rice Univ. Stud., 522, spring, 1966.
Библиографическая ссылка Price, H. S., J. C.Cavendish, R. S.Varga, Numerical methods of higher‐order accuracy for diffusion‐convection equations, J. Soc. Petrol. Eng., 83, 293–300, 1968.
Библиографическая ссылка Shamir, U. Y., D. R. F.Harleman, Numerical and analytical solutions of dispersion problems in homogeneous and layered aquifersMIT Hydrodyn. Rep. 89, Cambridge, MassachusettsMay, 1966.
Библиографическая ссылка Shamir, U. Y., D. R. F.Harleman, Numerical solutions for dispersion in porous mediums, Water Resources Res., 32, 557–581, 1967.
Библиографическая ссылка Stone, H. L., P. L. T.Brian, Numerical solution of convective transport problems, J. Amer. Inst. Chem. Eng., 95, 681–688, 1963.
Библиографическая ссылка Zienkiewicz, O., Y. K.Cheung, The Finite Element Method in Structural and Continuum Mechanics, 272, McGraw‐Hill, New York, 1967.

Скрыть метаданые