Автор |
Magorian, Thomas R. |
Дата выпуска |
1970 |
dc.description |
The length L of vegetated first order watersheds developed by fluvial erosion is related to the width W by L = W<sup>2</sup>/RU, where R is 3 for converging random walks of step size U, whose observed mean is 3 meters for normal dendritic drainage and 40 meters for basins over 300 meters long that drain directly into third or higher order streams. Bare soil watersheds show the relation L = 0.4 W. |
Формат |
application.pdf |
Копирайт |
Copyright 1970 by the American Geophysical Union. |
Название |
Vegetation and Watershed Shape |
Тип |
shortCommunication |
DOI |
10.1029/WR006i006p01759 |
Electronic ISSN |
1944-7973 |
Print ISSN |
0043-1397 |
Журнал |
Water Resources Research |
Том |
6 |
Первая страница |
1759 |
Последняя страница |
1764 |
Выпуск |
6 |
Библиографическая ссылка |
Chorley, R. J., A. J.Dunn, R. P.Beckinsale, History of the Study of Landforms, 678, Methuen, London, 1964. |
Библиографическая ссылка |
Horton, R. E., Erosional development of streams and their drainage basins, Bull. Geol. Soc. Amer., 56, 275–370, 1945. |
Библиографическая ссылка |
Leopold, L. B., W.Langbein, Concept of entropy in landscape evolution, U.S. Geol. Surv. Prof. Pap. 500‐A, 20, 1962. |
Библиографическая ссылка |
Seginer, I., Random walk and random roughness models of drainage networks, Water Resour. Res., 53, 591–607, 1969. |
Библиографическая ссылка |
Smart, J. S., Comment on Horton's law of stream numbers, Water Resour. Res., 33, 773–776, 1967. |
Библиографическая ссылка |
Strahler, A. N., Equilibrium theory of erosional slopes, Amer. J. Sci., 248, 673–696800–814, 1950. |