Автор |
Pinder, George F. |
Автор |
Sauer, Stanley P. |
Дата выпуска |
1971 |
dc.description |
The modification of a flood wave due to bank storage effects can be calculated by using numerical methods. The dynamic equations describing one‐dimensional open channel flow and the equation for two‐dimensional transient groundwater flow are solved simultaneously, coupled by an expression for flow through the wetted perimeter of the channel. Numerical experiments indicate that flood waves may be modified considerably by bank storage, particularly in the lower segments of a long reach, and that the degree of modification is influenced markedly by the hydraulic conductivity of the aquifer. |
Формат |
application.pdf |
Копирайт |
Copyright 1971 by the American Geophysical Union. |
Название |
Numerical Simulation of Flood Wave Modification Due to Bank Storage Effects |
Тип |
article |
DOI |
10.1029/WR007i001p00063 |
Electronic ISSN |
1944-7973 |
Print ISSN |
0043-1397 |
Журнал |
Water Resources Research |
Том |
7 |
Первая страница |
63 |
Последняя страница |
70 |
Выпуск |
1 |
Библиографическая ссылка |
Amein, M., C. F.Fang, Streamflow routing (with application to North Carolina rivers), Water Resour. Res. Inst. Rep., 17, 106, University of North Carolina, Raleigh, 1969. |
Библиографическая ссылка |
Bredehoeft, J. D., G. F.Pinder, Digital analysis of areal flow in multiaquifer groundwater systems: A quasi three‐dimensional model, Water Resour. Res., 63, 883–888, 1970. |
Библиографическая ссылка |
Cooper, H. H., M. I.Rorabaugh, Ground‐water movements and bank storage due to flood stages in surface streams, U.S. Geol. Surv. Water Supply Pap., 1536‐J, 343–363, 1963. |
Библиографическая ссылка |
DouglasJr., J., H. H.RachfordJr., On the numerical solution of heat conduction problems in two and three space variables, Trans. Amer. Math. Soc., 82, 421–439, 1956. |
Библиографическая ссылка |
Hantush, M. S., Bank storage in an aquifer between two perpendicular streams, Proc. Symp. Transient Ground Water Hydraul, 116–117Colorado State University, Fort Collins, 1963. |
Библиографическая ссылка |
Hornberger, G. M., J.Ebert, J.Remson, Numerical solution of the Boussinesq equation for aquifer‐stream interaction, Water Resour. Res., 62, 601–608, 1970. |
Библиографическая ссылка |
Isaacson, E., J. J.Stoker, A.Troesch, Numerical solution of flood prediction and river regulation problemsRep. 3, NYU‐235Institute for Mathematics and Mechanics, New York University, New York, 1956. |
Библиографическая ссылка |
Pinder, G. F., J. D.Bredehoeft, H. H.CooperJr., Determination of aquifer diffusivity from aquifer response to fluctuations in river stage, Water Resour. Res., 54, 850–855, 1969. |
Библиографическая ссылка |
Ragan, R. M., Laboratory evaluation of a numerical flood routing technique for channels subject to lateral infiows, Water Resour. Res., 21, 111–112, 1966. |
Библиографическая ссылка |
Rorabaugh, M. J., Use of water levels in estimating aquifer constants in a finite aquifer, Int. Ass. Sci. Hydrol. Publ., 52, 314–323, General Assembly of Helsinki, Commission of Subterranean Waters, 1960. |
Библиографическая ссылка |
Singh, K. P., Theoretical baseflow curves, J. Hydraul. Div., Amer. Soc. Civil Eng., 95HY6, 2029–2048, 1969. |
Библиографическая ссылка |
Stallman, R. W., I. S.Papadopulos, Measurement of hydraulic diffusivity of wedge‐shaped aquifer drained by streams, U.S. Geol. Surv. Prof. Pap., 514, 50, 1966. |
Библиографическая ссылка |
Stoker, J. J., Numerical solution of flood prediction and river regulation problemsRep. 1, NYU‐200Institute for Mathematics and Mechanics, New York University, New York, 1956. |
Библиографическая ссылка |
Wenzel, L. K., H. H.Sand, Water supply of the Dakota sandstone in the Ellendale‐Jamestown area, North Dakota, with reference to changes between 1923 and 1938, U.S. Geol. Surv. Water Supply Pap., 889‐A, 1942. |