Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Heidari, Manoutchehr
Автор Chow, Ven Te
Автор Kokotović, Petar V.
Автор Meredith, Dale D.
Дата выпуска 1971
dc.description The optimization of operating policies of multiple unit and multiple purpose water resources systems by traditional dynamic programing with the use of high speed digital computers encounters two major difficulties: memory requirements and computer time requirements. This paper presents an iterative method that can ease the above difficulties considerably. The method starts with a trial trajectory satisfying a specific set of initial and final conditions and applies Bellman's recursive equation in the neighborhood of this trajectory. At the end of each iteration step a locally improved trajectory is obtained and used as the trial trajectory in the next step. The method has proved particularly effective in the case of so‐called ‘invertible’ systems. The merits of the proposed approach are demonstrated through its application to a four‐unit, two‐purpose water resources system. To save computer time the example is restricted to deterministic inflows.
Формат application.pdf
Копирайт Copyright 1971 by the American Geophysical Union.
Название Discrete Differential Dynamic Programing Approach to Water Resources Systems Optimization
Тип article
DOI 10.1029/WR007i002p00273
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 7
Первая страница 273
Последняя страница 282
Выпуск 2
Библиографическая ссылка Bellman, R., Dynamic Programming, 340, Princeton University Press, Princeton, New Jersey, 1957.
Библиографическая ссылка Bellman, R., Adaptive Control Processes, 255, Princeton University Press, Princeton, New Jersey, 1961.
Библиографическая ссылка Bryson, A. E., Yu‐ChiHo, Applied Optimal Contro1, 481, Blaisdell, Waltham, Massachusetts, 1969.
Библиографическая ссылка Fletcher, R., M. J. D.Powell, A rapidly convergent descent method for minimization, Comput. J., 6, 163–168, 1963.
Библиографическая ссылка Fletcher, R., C. M.Reeves, Function minimization by conjugate gradients, Comput. J., 7, 149–154, 1964.
Библиографическая ссылка Jacobson, D. H., Second‐order and second‐variation methods for determining optimal control: A comparative study using differential dynamic programming, Int. J. Contr., 72, 175–196, 1968a.
Библиографическая ссылка Jacobson, D. H., New second‐order and first‐order algorithms for determining optimal control: A differential dynamic programming approach, J. Optimization Theory Appl., 26, 411–440, 1968b.
Библиографическая ссылка Jacobson, D. H., Differential dynamic programming methods for solving bang‐bang control problems, IEEE Trans. Automat. Contr., AC‐136, 661–675, 1968c.
Библиографическая ссылка Jacobson, D. H., D. O.Mayne, Differential Dynamic Programming, 208, American Elsevier, New York, 1970.
Библиографическая ссылка Korsak, A. J., R. E.Larson, A dynamic programming successive approximation technique with convergence proofs, 2, Convergence proofs, Int. Fed. Automat. Contr., Automat., 62, 261–270, 1970.
Библиографическая ссылка Larson, R. E., State Increment Dynamic Programming, 256, American Elsevier, New York, 1968.
Библиографическая ссылка Larson, R. E., andW. G.Keekler, Applications of dynamic programming to water resources problems, inSymposium on Computer Control of Natural Resources and Public Utilities,, 52 pp.,International Federation of Automatic Control,Haifa, Israel,September1967.
Библиографическая ссылка Lee, S. E., Dynamic programming, quasilinearization and the dimensionality difficulty, J. Math. Anal. Appl., 27, 303–322, 1969.
Библиографическая ссылка Mayne, D., A second‐order gradient method for determining optimal trajectories of non‐linear discrete‐time systems, Int. J. Contr., 31, 85–95, 1966.
Библиографическая ссылка Wong, P. J., andD. G.Luenberger, Reducing the memory requirements of dynamic programming,Oper. Res.,16,1115–1125,November‐December,1968.

Скрыть метаданые