Автор |
Bennett, James P. |
Дата выпуска |
1971 |
dc.description |
In terms of its response to biochemical oxygen demand (BOD) and dissolved oxygen (DO) inputs, a natural waterway may be treated as a system governed by the BOD and DO balance differential equations. Using the response of the DO balance differential equation to impulse inputs of DO and BOD, one can compute by convolution the response of the system to arbitrary BOD and DO inputs. The convolution technique requires numerical integration, but it is not a numerical solution to a differential equation; it therefore avoids the stability problems inherent in such solutions. The convolution technique permits consideration of longitudinal dispersion in systems that have time varying DO and BOD inputs, a situation that could previously be investigated only by numerical solutions to the basic differential equations. Examples show the capability of the convolution technique to reproduce field data and to match previously developed analytical and numerical techniques. |
Формат |
application.pdf |
Копирайт |
Copyright 1971 by the American Geophysical Union. |
Название |
Convolution Approach to the Solution for the Dissolved Oxygen Balance Equation in a Stream |
Тип |
article |
DOI |
10.1029/WR007i003p00580 |
Electronic ISSN |
1944-7973 |
Print ISSN |
0043-1397 |
Журнал |
Water Resources Research |
Том |
7 |
Первая страница |
580 |
Последняя страница |
590 |
Выпуск |
3 |
Библиографическая ссылка |
Bella, David A., William E.Dobbins, Difference modeling of stream pollution, J. Sanit. Eng. Div., Amer. Soc. Civil Eng., 94SA5, 995, 1968. |
Библиографическая ссылка |
Bendat, Julius S., Allan G.Piersol, Measurement and Analysis of Random Data, 390, John Wiley, New York, 1966. |
Библиографическая ссылка |
Camp, Thomas R., Water and Its Impurities, 355, Reinhold, New York, 1963. |
Библиографическая ссылка |
Di Toro, D. M., D. J.O'Connor, The distribution of dissolved oxygen in a stream with time varying velocity, Water Resour. Res., 43, 639–646, 1968. |
Библиографическая ссылка |
Dresnack, Robert, William E.Dobbins, Numerical analysis of BOD and DO profiles, J. Sanit. Eng. Div., Amer. Soc. Civil Eng., 94SA5, 789, 1968. |
Библиографическая ссылка |
Frankel, Richard J., Economic evaluation of water quality, an engineering‐economic model for water quality managementSanit. Eng. Res. Lab. Rep. 65‐3College of Engineering and School of Public Health, University of California, Berkeley, 1965. |
Библиографическая ссылка |
Holley, Edward R., Discussion of ‘Difference modeling of stream pollution,’ by David A. Bella and William E. Dobbins, J. Sanit. Eng. Div., Amer. Soc. Civil Eng., 95SA5, 968, 1969. |
Библиографическая ссылка |
Lee, Y. W., Statistical Theory of Communication, 509, John Wiley, New York, 1960. |
Библиографическая ссылка |
Li, Wen‐Hsuing, Unsteady dissolved‐oxygen sag in a stream, J. Sanit. Eng. Div., Amer. Soc. Civil Eng., 88SA3, 75, 1962. |
Библиографическая ссылка |
O'Connor, Donald J., Oxygen balance of an estuary, J. Sanit. Eng. Div., Amer. Soc. Civil Eng., 86SA3, 35, 1960. |
Библиографическая ссылка |
O'Connor, Donald J., Estuarine distribution of nonconservative substances, J. Sanit. Eng. Div., Amer. Soc. Civil Eng., 91SA1, 23–43, 1965. |
Библиографическая ссылка |
O'Connor, Donald J., The temporal and spatial distribution of dissolved oxygen in streams, Water Resour. Res., 31, 65–79, 1967. |
Библиографическая ссылка |
O'Connor, D. J., D. M.Di Toro, Photosynthesis and oxygen balance in streams, J. Sanit. Eng. Div., Amer. Soc., Civil Eng., 96SA2, 547, 1970. |
Библиографическая ссылка |
Streeter, H. W., E. B.Phelps, A study of the pollution and natural purification of the Ohio River. 3 Factors concerned in the phenomena of oxidation and reaeration, Public Health Serv. Publ., 146, U.S. Department of Health, Education, and Welfare, Washington, D. C., 1925. |
Библиографическая ссылка |
Thomann, Robert V., Mathematical model for dissolved oxygen, J. Sanit. Eng. Div., Amer. Soc. Civil Eng., 89SA5, 1, 1963. |
Библиографическая ссылка |
Thomann, Robert V., Recent results from a mathematical model of water pollution control in the Delaware estuary, Water Resour. Res., 13, 349–360, 1965. |
Библиографическая ссылка |
WylieJr., C. R., Advanced Engineering Mathematics, 696, McGraw‐Hill, New York, 1960. |