Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Lawson, D. W.
Дата выпуска 1971
dc.description Two modifications of Shamir and Harleman's two‐equation scheme for the finite difference solution of two‐dimensional dispersion problems are presented. These modifications improve both the accuracy and the efficiency of the solution. Shamir and Harleman's one‐equation scheme is more efficient than the improved two‐equation schemes, but it is not as accurate.
Формат application.pdf
Копирайт Copyright 1971 by the American Geophysical Union.
Название Improvements in the Finite Difference Solution of Two‐Dimensional Dispersion Problems
Тип shortCommunication
DOI 10.1029/WR007i003p00721
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 7
Первая страница 721
Последняя страница 725
Выпуск 3
Библиографическая ссылка Bachmat, Y., J.Bear, The general equations of hydrodynamic dispersion in homogeneous, isotropic, porous mediums, J. Geophys. Res., 6912, 2561–2567, 1964.
Библиографическая ссылка deJosselin de Jong, G., Longitudinal and transverse diffusion in granular deposits, Trans. Amer. Geophys. Union, 391, 67–74, 1958.
Библиографическая ссылка Peaceman, D. W., H. H.RachfordJr., The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 31, 28–41, 1955.
Библиографическая ссылка Shamir, U. Y., D. R. F.Harleman, Numerical and analytical solutions of dispersion problems in homogeneous and layered aquifersM.I.T. Dep. Civil Eng. Hydrodyn. Lab. Rep. 89, Cambridge, Massachusetts, 1966.
Библиографическая ссылка Shamir, U. Y., D. R. F.Harleman, Numerical solutions for dispersion in porous mediums, Water Resour. Res., 32, 557–581, 1967.
Библиографическая ссылка Stone, H. L., P. L. T.Brian, Numerical solution of convective transport problems, J. Amer. Inst. Chem. Eng., 95, 681–688, 1963.

Скрыть метаданые