Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Ploeg, R. R.
Автор Kirkham, Don
Автор Boast, C. W.
Дата выпуска 1971
dc.description A theoretical and exact solution is presented for steady saturated flow to a fully penetrating well in an elliptical confined aquifer; the aquifer is considered isotropic and homogeneous. The potential and stream functions for a number of different‐shaped aquifers and well locations are developed by starting with a general solution to Laplace's equation and using a modified Gram‐Schmidt method. Flow tables are presented for a number of geometries. For example, the tables show that a well 6 inches in diameter, located in the center of an elliptical aquifer with a ratio of minor to major axis of ½ and a major axis 1000 feet long, provides 0.857 as much discharge as a well located on the major axis of an elliptical aquifer seven‐eighths of the way from the center to the edge. The variety of geometries considered enables one to predict the well discharge for aquifers that approach the shape of an ellipse. Flow net examples are presented.
Формат application.pdf
Копирайт Copyright 1971 by the American Geophysical Union.
Название Steady State Well Flow Theory for a Confined Elliptical Aquifer
Тип article
DOI 10.1029/WR007i004p00942
Electronic ISSN 1944-7973
Print ISSN 0043-1397
Журнал Water Resources Research
Том 7
Первая страница 942
Последняя страница 954
Выпуск 4
Библиографическая ссылка , Handbook of Mathematical Functions, Appl. Math. Ser., 556M.Abramowitz, I. A.Stegun, Government Printing Office, Washington, D. C., 1967.
Библиографическая ссылка Bewley, L. V., Two‐Dimensional Fields in Electrical Engineering, 46–47, Macmillan, New York, 1948.
Библиографическая ссылка Boast, C. W., Potential flow to a piezometer or a well partially penetrating a porous medium, M.Sc. thesis,Iowa State University,Ames,1969.
Библиографическая ссылка Byerly, W. E., Fourier's Series, 135, Dover, New York, 1959.
Библиографическая ссылка , Government Printing Office, Table of Hyperbolic Sines and Cosines, Appl. Math Ser., 45, Washington, D. C., 1955.
Библиографическая ссылка Harr, M. E., Groundwater and Seepage, 315, McGraw‐Hill, New York, 1962.
Библиографическая ссылка , International Business Machines Corporation, System/360 Scientific Subroutine Package (360A‐CM‐03x) Version 3, Programmer's Manual4, IBM Technical Publications Department, White Plains, New York, 1968.
Библиографическая ссылка Johnson, Edward E., Groundwater and Wells1, 147, Saint Paul, Minnesota, 1966.
Библиографическая ссылка Kirkham, Don, W. L.Powers, Advanced Soil Physics, Wiley‐Interscience, New York, 1971.
Библиографическая ссылка Kreyszig, E., Advanced Engineering Mathematics2, 545, John Wiley, New York, 1967.
Библиографическая ссылка Muskat, M., Flow of Homogeneous Fluids through Porous Media, 172, J. W. Edwards, Ann Arbor, Michigan, 1946.
Библиографическая ссылка Polubarinova‐Kochina, P. Ya., Theory of Ground Water Movement, translated from RussianJ. M.Roger De Wiest, Princeton University Press, Princeton, New Jersey, 1962.
Библиографическая ссылка Powers, W. L., DonKirkham, G.Snowden, Orthonormal function tables and the seepage of steady rain through soil bedding, J. Geophys. Res., 7224, 6225–6237, 1967.
Библиографическая ссылка Smythe, W. R., Static and Dynamic Electricity2, 75–76, McGraw‐Hill, New York, 1939.
Библиографическая ссылка Thomas, G. B., Calculus and Analytic Geometry3, 814–820, Addison‐Wesley, Reading, Massachusetts, 1960.
Библиографическая ссылка Todd, D. K., Groundwater Hydrology6, 336, John Wiley, New York, 1967.

Скрыть метаданые