Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Izuml, Masako
Автор Izumi, Shin-Ichi
Дата выпуска 1973
dc.description Carleson has proved that the Fourier series of functions belonging to the class L<sup>2</sup> converge almost everywhere.Improving his method, Hunt proved that the Fourier series of functions belonging to the class L<sup>p</sup> (p > 1) converge almost everywhere. On the other hand, Kolmogoroff proved that there is an integrable function whose Fourier series diverges almost everywhere. We shall generalise Kolmogoroff's Theorem as follows: There is a function belonging to the class L(logL)<sup>p</sup> (p > 0) whose Fourier series diverges almost everywhere. The following problem is still open: whether “almost everywhere” in the last theorem can be replaced by “everywhere” or not. This problem is affirmatively answered for the class L by Kolmogoroff and for the class L(log logL)<sup>p</sup> (0 < p < 1) by Tandori.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Australian Mathematical Society 1973
Название Divergence of Fourier series
Тип research-article
DOI 10.1017/S0004972700042532
Electronic ISSN 1755-1633
Print ISSN 0004-9727
Журнал Bulletin of the Australian Mathematical Society
Том 8
Первая страница 289
Последняя страница 304
Аффилиация Izuml Masako; Australian National University
Аффилиация Izumi Shin-Ichi; Australian National University
Выпуск 2

Скрыть метаданые