Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Van Thuyet, Le
Дата выпуска 1993
dc.description A ring R is called right co-FPF if every finitely generated cofaithful right R-module is a generator in mod-R. This definition can be carried over from rings to modules. We say that a finitely generated projective distinguished right R-module P is a co-FPF module (quasi-co-FPF module) if every P-finitely generated module, which finitely cogenerates P, generates σ[P] (P, respectively). We shall prove a result about the relationship between a co-FPF module and its endomorphism ring, and apply it to study some co-FPF rings.
Формат application.pdf
Издатель Cambridge University Press
Копирайт Copyright © Australian Mathematical Society 1993
Название On co-FPF modules
Тип research-article
DOI 10.1017/S0004972700015689
Electronic ISSN 1755-1633
Print ISSN 0004-9727
Журнал Bulletin of the Australian Mathematical Society
Том 48
Первая страница 257
Последняя страница 264
Аффилиация Van Thuyet Le; Hue Teachers' Training College
Выпуск 2

Скрыть метаданые