Автор |
Van Thuyet, Le |
Дата выпуска |
1993 |
dc.description |
A ring R is called right co-FPF if every finitely generated cofaithful right R-module is a generator in mod-R. This definition can be carried over from rings to modules. We say that a finitely generated projective distinguished right R-module P is a co-FPF module (quasi-co-FPF module) if every P-finitely generated module, which finitely cogenerates P, generates σ[P] (P, respectively). We shall prove a result about the relationship between a co-FPF module and its endomorphism ring, and apply it to study some co-FPF rings. |
Формат |
application.pdf |
Издатель |
Cambridge University Press |
Копирайт |
Copyright © Australian Mathematical Society 1993 |
Название |
On co-FPF modules |
Тип |
research-article |
DOI |
10.1017/S0004972700015689 |
Electronic ISSN |
1755-1633 |
Print ISSN |
0004-9727 |
Журнал |
Bulletin of the Australian Mathematical Society |
Том |
48 |
Первая страница |
257 |
Последняя страница |
264 |
Аффилиация |
Van Thuyet Le; Hue Teachers' Training College |
Выпуск |
2 |