Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Bialecki, Bernard
Автор Karageorghis, Andreas
Дата выпуска 2000
dc.description A Legendre spectral collocation method is presented for the solution of the biharmonic Dirichlet problem on a square. The solution and its Laplacian are approximated using the set of basis functions suggested by Shen, which are linear combinations of Legendre polynomials. A Schur complement approach is used to reduce the resulting linear system to one involving the approximation of the Laplacian of the solution on the two vertical sides of the square. The Schur complement system is solved by a preconditioned conjugate gradient method. The total cost of the algorithm is O(N <sup>3</sup>). Numerical results demonstrate the spectral convergence of the method.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 2000
Тема Biharmonic Dirichlet problem
Тема spectral collocation
Тема Schur complement
Тема preconditioned conjugate gradient method.
Название A Legendre Spectral Collocation Method for the Biharmonic Dirichlet Problem
Тип research-article
DOI 10.1051/m2an:2000160
Electronic ISSN 1290-3841
Print ISSN 0764-583X
Журнал ESAIM: Mathematical Modelling and Numerical Analysis
Том 34
Первая страница 637
Последняя страница 662
Аффилиация Bialecki Bernard; Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado 80401, U.S.A. (bbialeck@mines.edu)
Аффилиация Karageorghis Andreas; Department of Mathematics and Statistics, University of Cyprus, P.O. Box 537, 1678 Nicosia, Cyprus.
Выпуск 3

Скрыть метаданые