Мобильная версия

Доступно журналов:

3 288

Доступно статей:

3 891 637

 

Скрыть метаданые

Автор Wang, Song
Дата выпуска 1999
dc.description In this paper we present a novel exponentially fitted finite element method with triangular elements for the decoupled continuity equations in the drift-diffusion model of semiconductor devices. The continuous problem is first formulated as a variational problem using a weighted inner product. A Bubnov-Galerkin finite element method with a set of piecewise exponential basis functions is then proposed. The method is shown to be stable and can be regarded as an extension to two dimensions of the well-known Scharfetter-Gummel method. Error estimates for the approximate solution and its associated flux are given. These h-order error bounds depend on some first-order seminorms of the exact solution, the exact flux and the coefficient function of the convection terms. A method is also proposed for the evaluation of terminal currents and it is shown that the computed terminal currents are convergent and conservative.
Формат application.pdf
Издатель EDP Sciences
Копирайт © EDP Sciences, SMAI, 1999
Тема exponential fitting
Тема finite element method
Тема semiconductors.
Название A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices
Тип research-article
DOI 10.1051/m2an:1999107
Electronic ISSN 1290-3841
Print ISSN 0764-583X
Журнал ESAIM: Mathematical Modelling and Numerical Analysis
Том 33
Первая страница 99
Последняя страница 112
Аффилиация Wang Song; School of Mathematics and Statistics Curtin University of Technology, Perth 6845, Australia.
Выпуск 1

Скрыть метаданые